Skip to main content
Log in

Quantification of Microsegregation in Cast Al-Si-Cu Alloys

  • Symposium: Simulation of Aluminum Shape Casting Processing
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The random sampling approach offers an elegant yet accurate way of validating microsegregation models. However, both instrumental errors and interference from secondary phases complicate the treatment of randomly sampled microprobe data. This study demonstrates that the normal procedure of sorting the data for each element independently can lead to inaccurate estimation of segregation profiles within multicomponent, multiphase, aluminum alloys. A recently proposed alloy-independent approach is shown to more reliably isolate these interferences, allowing more accurate validation of microsegregation models. Application of this approach to examine solidification segregation of a 319-type alloy demonstrated that, for these slowly cooled castings, neither Sr or TiB2 additions significantly affected coring of Cu within the primary α-Al dendrites. Comparison against predictions of CALPHAD-type Gulliver–Scheil models was less satisfactory. Consideration of back-diffusion and morphology effects through a one-dimensional (1-D) numerical model do not improve the agreement. Possible reasons for the lack of agreement are hypothesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. Y.X. Gao, J.Z. Yi, P.D. Lee, T.C. Lindley: Acta Mater., 2004, vol. 52, pp. 5435-49

    Article  Google Scholar 

  2. E. Scheil: Z. Metallkd., 1942, vol. 34, pp. 70-72

    Google Scholar 

  3. H.D. Brody, M.C. Flemings: Trans. TMS-AIME, 1966, vol. 236, pp. 615–24

    Google Scholar 

  4. T.W. Clyne, W. Kurz: Metall. Trans. A, 1981, vol. 12A, pp. 965-71

    Google Scholar 

  5. Y.M. Won, B.G. Thomas: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1755-67

    Article  Google Scholar 

  6. C.Y. Wang, C. Beckermann: Mater. Sci. Eng., 1993, vol. A171, pp. 199-211

    Google Scholar 

  7. H. Combeau, J.-M. Drezet, A. Mo, M. Rappaz: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1314-27

    Google Scholar 

  8. Thermo-Calc Classic V. Q, Thermo-Calc Software AB, Stockholm, 2005

  9. Panengine-Phase Equilibrium Calculation Engine for Multicomponent Systems, Computherm LLC, Wisconsin, USA, 2000

  10. F. Xie, T. Kraft, Y. Zuo, C.-H. Moon, Y.A. Chang: Acta Mater., 1999, vol. 47, pp. 489-500

    Article  Google Scholar 

  11. X. Yan, F. Xie, M. Chu, Y.A. Chang: Mater. Sci. Eng., 2001, vol. 302, pp. 268-74

    Article  Google Scholar 

  12. X. Yan, S. Chen, F. Xie, Y.A. Chang: Acta Mater., 2002, vol. 50, pp. 2199-207

    Article  Google Scholar 

  13. F. Xie, X. Yan, L. Ding, F. Zhang, S. Chen, M.G. Chu, Y.A. Chang: Mater. Sci. Eng. A, 2003, vol. 355, pp. 144-53

    Article  Google Scholar 

  14. T. Kraft, M. Rettenmayr, H.E. Exner: Mater. Sci. Eng., 1996, vol. 4, pp. 161-77

    Article  Google Scholar 

  15. X. Doré, H. Combeau, M. Rappaz: Acta Mater., 2000, vol. 48, pp. 3951-62

    Article  Google Scholar 

  16. L. Thuinet, G. Lesoult, H. Combeau: in Modeling of Casting, Welding and Advanced Solidification Processes X, D.M. Stefanescu, J.A. Warren, M.R. Jolly, M.J.M. Krane, eds., TMS, Warrendale, PA, 2003, pp. 237-44

    Google Scholar 

  17. U. Grafe, B. Böttger, J. Tiaden, S.G. Fries: Scripta Mater., 2000, vol. 42, pp. 1179-86

    Article  Google Scholar 

  18. J. Tiaden, B. Nestler, H.J. Diepers, I. Steinbach: Physica D, 1998, vol. 115, pp. 73-86

    Article  MATH  Google Scholar 

  19. A. Jacot, M. Rappaz: Acta Mater., 2002, vol. 50, pp. 1909-26

    Article  Google Scholar 

  20. D.J. Jarvis, S.G.R. Brown, J.A. Spittle: Mater. Sci. Technol., 2000, vol. 16, pp. 1420-24

    Article  Google Scholar 

  21. D.J. Jarvis: University of Wales, Swansea, 2001

  22. N. Warnken, B. Böttger, S.G. Fries, I. Steinbach: in Modeling of Casting, Welding and Advanced Solidification Processes X, D.M. Stefanescu, J.A. Warren, M.R. Jolly, M.J.M. Krane, eds., TMS, Warrendale, PA, 2003, pp. 21-28

    Google Scholar 

  23. M.F. Zhu, C.P. Hong: in Modeling of Casting, Welding and Advanced Solidification Processes X, D.M. Stefanescu, J.A. Warren, M.R. Jolly, M.J.M. Krane, eds., TMS, Warrendale, PA, 2003, pp. 91-98

    Google Scholar 

  24. M.F. Zhu, C.P. Hong: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1555-63

    Article  Google Scholar 

  25. M.C. Flemings, D.R. Poirier, R.V. Barone, H.D. Brody: J. Iron Steel Inst., 1970, vol. 208, pp. 371-81

    Google Scholar 

  26. M.N. Gungor: Metall. Trans. A, 1989, vol. 20A, pp. 2529-33

    Google Scholar 

  27. M. Ganesan, D. Dye, P.D. Lee: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2191-2204

    Article  Google Scholar 

  28. M.S.A. Karunaratne, D.C. Cox, P. Carter, R.C. Reed: in Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, J.J. Schirra, eds., TMS, Warrendale, PA, 2000, pp. 263-72

    Google Scholar 

  29. M. Ganesan, D. Dye, and P.D. Lee: 2005 Int. Symp. on Liquid Metal Processing and Casting, P.D. Lee, A. Mitchell, R.L. Williamson, and A.S. Ballantyne, eds., Sante Fe, NM, 2005, ASM INTERNATIONAL, Materials Park, OH, 2005, pp. 289–94

  30. P.D. Lee, T.C. Lindley: in Shaping Casting: The John Campbell Symp., M. Tiryakioglu, P.N. Crepeau, eds., TMS, Warrendale, PA, 2005, pp. 225-34

    Google Scholar 

  31. L. Backerud, G. Chai, and J. Tamminen: Solidification Characteristics of Aluminum Alloys, vol. 2, Foundry Alloys, AFS/Skanaaluminium, Des Plaines, IL, 1990, pp. 85–101

  32. E.C. Kurum, H.B. Dong, J.D. Hunt: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3103-10

    Article  Google Scholar 

  33. C.M. Dinnis, A.K. Dahle, J.A. Taylor: Mater. Sci. Eng. A, 2005, vol. 392, pp. 440-48

    Article  Google Scholar 

  34. Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, S. Valtierra: J. Mater. Sci., 2003, vol. 38, pp. 1203-18

    Article  Google Scholar 

  35. I.L. Ferreira, C.A. Santos, V.R. Voller, A. Garcia: Metall. Mater. Trans. B, 2004, vol. 35, pp. 285-97

    Article  Google Scholar 

  36. N. Saunders, X. Li, A.P. Miodownik, J.-P. Schille: in Modeling of Casting, Welding and Advanced Solidification Processes X, D.M. Stefanescu, J.A. Warren, M.R. Jolly, M.J.M. Krane, eds., TMS, Warrendale, PA, 2003, pp. 669-76

    Google Scholar 

  37. I. Ansara, A.T. Dinsdale, and M.H. Rand: Cost507-Definition of Thermochemical and Thermophysical Properties to Provide a Database for the Development of New Light Alloys, vol. 1–3, European Cooperation in the Field of Scientific and Technical Research, European Commission, Vaals, The Netherlands, 1997

  38. SSOL2-SGTE Solutions Database, ThermoCalc Software AB, Stockholm, 2003

  39. L. Thuinet, H. Combeau: J. Mater. Sci., 2004, vol. 39, pp. 7213-19

    Article  Google Scholar 

  40. A. Roosz, E. Halder, H.E. Exner: Mater. Sci. Technol., 1986, vol. 2, pp. 1149-55

    Google Scholar 

  41. D. Bergner: Neue Hutte, 1984, vol. 29, pp. 207-10

    Google Scholar 

  42. E.A. Brandes and G.B. Brook: Smithells Light Metals Handbook, 7th ed., Butterworth-Heinemann, Oxford, UK, 1998, p. 1792

Download references

Acknowledgments

The authors thank the Ford URF and colleagues at Ford Research Lab (Dearborn, MI) for provision of research materials. One of the authors (MG) also acknowledges financial support from Cannon-Muskegon Corp., the Department of Materials at Imperial College, and the Overseas Research Scheme (ORS). JMatPro was generously provided by Sente Software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Lee.

Additional information

This article is based on a presentation made in the symposium entitled “Simulation of Aluminum Shape Casting Processing: From Design to Mechanical Properties,” which occurred March 12–16, 2006 during the TMS Spring Meeting in San Antonio, Texas, under the auspices of the Computational Materials Science and Engineering Committee, the Process Modeling, Analysis and Control Committee, the Solidification Committee, the Mechanical Behavior of Materials Committee, and the Light Metal Division/Aluminum Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesan, M., Thuinet, L., Dye, D. et al. Quantification of Microsegregation in Cast Al-Si-Cu Alloys. Metall Mater Trans B 38, 557–566 (2007). https://doi.org/10.1007/s11663-007-9071-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-007-9071-0

Keywords

Navigation