Skip to main content
Log in

Studies on Flow Behavior of Aluminum Using Vision System during Cold Upsetting

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Cylindrical specimens of Electrical Conductivity grade aluminum were upset between flat platens to study the metal flow at room temperature. Platen-specimen-interface lubrication and specimen aspect ratio (height/diameter) were studied as process parameters. A vision system using PC-based video recording with a CCD (charge coupled device) camera was used to study the predrawn grid deformation at the midplane of the specimen and corresponding flow behavior. The forming process has been modeled and analyzed using the finite element software ANSYS. Lubrication minimized barreling of the lateral-free surface. Barreling decreased with increased aspect ratio. Microhardness studies reveal nonuniform deformation within the specimen. This effect was pronounced with high friction and low aspect ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. LECO is a trademark of LECO Corporation, St. Joseph, MI.

References

  1. H. Kudo, K. Aoi: J. Jpn. Soc. Techn. Plast., 1967, vol. 8, pp. 17–27

    Google Scholar 

  2. P.F. Thomason: Int. J. Mech. Sci., 1968, vol. 11, pp. 187–98

    Article  Google Scholar 

  3. S. Kobayashi: J. Eng. Industry, Trans. ASME, 1970, Ser. B, vol. 92 (2), pp. 391–99

  4. H.A. Kuhn, P.W. Lee: Metall. Trans., 1971, vol. 2, pp. 3197–3202

    Google Scholar 

  5. M. Kunogi: Reports of the Scientific Research Institute, Tokyo, 1954, vol. 30, p. 63

  6. A.T. Male and M.G. Cockcroft: J. Inst. Met., 1964–65, vol. 93, p. 38

  7. M. Jolgaf, A.M.S. Hamouda, S. Sulaiman, M.M. Haddar: J. Mater. Processing Technol., 2003, vol. 138, pp. 436–42

    Article  Google Scholar 

  8. R. Shivpuri: Trans. Ind. Inst. Met., 2004, vol. 57 (4), pp. 345–66

    Google Scholar 

  9. T. Altan and D. Hannan: Forging: Prediction and Elimination of Defects in Cold Forging Using Process Simulation–The Engineering Research Center for Met Shape Manufacturing, 2002, http.www.ercnsm.org

  10. V. Vazquez, T. Altan: J. Mater. Processing Technol., 2000, vol. 98, pp. 212–23

    Article  Google Scholar 

  11. S. Kobayashi, S.I. Oh, T. Altan: Metal Forming and the Finite Element Method, Oxford University Press, New York, NY, 1989

    Google Scholar 

  12. L.H. Butler: Metallurgia, 1957, vol. 55, pp. 63–66

    MathSciNet  Google Scholar 

  13. L.H. Butler: Metallurgia, 1960, vol. 61, pp. 167–74

    Google Scholar 

  14. L.H. Butler: J. Inst. Met., 1959–60, vol. 88, pp. 337–43

  15. E. Tanaka, S. Semoto, and S. Wantanabe: Tohoku University Science Report Research Institute, Tohoku University, Sendai, Japan, 1965, Ser. A, vol. 17, pp. 208–18

  16. E.P. Unksov: An Engineering Theory of Plasticity, Butterworth, London, 1961

    Google Scholar 

  17. K.M. Kulkarni, S. Kalpakjian: J. Eng. Ind., 1969, vol. 91, pp. 743–54

    Google Scholar 

  18. T. Ungair, J. Gubicza, G. Ribairik, A. Borbeily: J. Appl. Crystallogr., 2001, vol. 34, p. 298

    Article  Google Scholar 

  19. Y. Iwahashi, Z. Horita, M. Nemota, T.G. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, p. 2503

    Article  Google Scholar 

  20. S. Komlira, Z. Horita, M. Nemoto, T.G. Longdon: J. Mater. Res., 1999, vol. 14, p. 4044

    Article  Google Scholar 

  21. E. Parteder, R. Bunten: J. Mater. Processing Technol., 1998, vol. 74, pp. 227–33

    Article  Google Scholar 

  22. J.H. Hollomon: Trans. AIME, 1945, vol. 162, p. 268

    Google Scholar 

  23. W. Tong: J. Mech. Phys. Solids, 1998, vol. 46 (10), pp. 2087–2102

    Article  MATH  Google Scholar 

  24. J.A. Bailey: Int. J. Mech. Sci., 1969, vol. 11, pp. 491–507

    Article  Google Scholar 

  25. W.T. Wu, J.T. Jinn, and C.E. Fischer: Scientific Forming Technologies Corporation, ch. 15, http://www.asminternational.org/Template.cfm?Section=BrowsebyFormat&template=Ecommerce/FileDisplay.cfm&file=06701G_ch.pdf

  26. http://www.matweb.com

  27. C.H. Lee, S. Kobayashi: J. Eng. Ind. (Trans. ASME), 1973, vol. 95, p. 865

    Google Scholar 

  28. O.C. Zeinkiewiez: Numerical Analysis of Forming Processes, Wiley, New York, NY, 1984, pp. 1–44

    Google Scholar 

  29. Ansys 8.0 Reference Manual, ANSYS, Inc. Southpointe 275 Technology Drive Canonsburg, PA 15317

Download references

Acknowledgments

The authors thank the Department of Metallurgical Engineering and Department of Mechanical Engineering, Andhra University College of Engineering, Visakhapatnam, for providing necessary support in conducting the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.R.M.R. Bhargava.

Additional information

Manuscript submitted November 2, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamaluddin, S., Rao, J.B., Sarcar, M. et al. Studies on Flow Behavior of Aluminum Using Vision System during Cold Upsetting. Metall Mater Trans B 38, 681–688 (2007). https://doi.org/10.1007/s11663-007-9070-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-007-9070-1

Keywords

Navigation