Skip to main content
Log in

Determination of Wetting Behavior, Spread Activation Energy, and Quench Severity of Bioquenchants

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An investigation was conducted to study the suitability of vegetable oils such as sunflower, coconut, groundnut, castor, cashewnut shell (CNS), and palm oils as quench media (bioquenchants) for industrial heat treatment by assessing their wetting behavior and severity of quenching. The relaxation of contact angle was sharp during the initial stages, and it became gradual as the system approached equilibrium. The equilibrium contact angle decreased with increase in the temperature of the substrate and decrease in the viscosity of the quench medium. A comparison of the relaxation of the contact angle at various temperatures indicated the significant difference in spreading of oils having varying viscosity. The spread activation energy was determined using the Arrhenius type of equation. Oils with higher viscosity resulted in lower cooling rates. The quench severity of various oil media was determined by estimating heat-transfer coefficients using the lumped capacitance method. Activation energy for spreading determined using the wetting behavior of oils at various temperatures was in good agreement with the severity of quenching assessed by cooling curve analysis. A high quench severity is associated with oils having low spread activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. C.N.C. Lam, N. Kim, D. Hui, D.Y. Kwok, M.L. Hair, A.W. Neumann: Coll. Surf. A, 2001, vol. 189, pp. 265–78

    Article  Google Scholar 

  2. D.N. Rao: Coll. Surf. A, 2003, vol. 206, pp. 203–16

    Article  Google Scholar 

  3. A. Perwuelz, T.N. De Olivera, C. Caze: Coll. Surf. A, 1999, vol. 147, pp. 317–29

    Article  Google Scholar 

  4. M. Brugnara, E. Degasperi, C. DellaVolpe, D. Maniglio, A. Penati, S. Siboni, L. Toniolo, T. Poli, S. Invernizzi, V. Castelvetro: Coll. Surf. A, 2004, vol. 241, pp. 299–312

    Article  Google Scholar 

  5. J. Eggers, R. Evans: J. Coll. Interface Sci., 2004, vol. 280, pp. 537–38

    Article  Google Scholar 

  6. D. Erickson, B. Blackmore, D. Li: Coll. Surf. A, 2001, vol. 182, pp. 109–22

    Article  Google Scholar 

  7. B.B. Sauer, W.G. Kampert: J. Coll. Interface Sci., 1998, vol. 199, pp. 28–37

    Article  Google Scholar 

  8. Y. Gu, D. Li: Coll. Surf. A, 1998, vol. 142, pp. 243–56

    Article  Google Scholar 

  9. P.T. Vianco, D.R. Frear: JOM, 1993, vol. 45, pp. 14–19

    Google Scholar 

  10. D.R. Frear, W.B. Jones, K.R. Kinsman: Solder Mechanics—A State of the Art Assessment, TMS, Warrendale, PA, 1991, pp. 1–106.

    Google Scholar 

  11. S.G. Kandlikar, M.E. Steinke: Int. J. Heat Mass Trans., 2002, vol. 45, pp. 3771–80

    Article  Google Scholar 

  12. S.J. Gokhale, J.L. Plawsky, P.C. Wayner Jr.: J. Coll. Interface Sci., 2003, vol. 259, pp. 354–66

    Article  Google Scholar 

  13. V.H. Lopez, A.R. Kennedy: J. Coll. Interface Sci., 2006, vol. 298, pp. 356–62

    Article  Google Scholar 

  14. A. Amirfazli, D. Chatain, A.W. Neumann: Coll. Surf. A, 1998, vol. 142, pp. 183–88

    Article  Google Scholar 

  15. J. De Coninck, M.J. de Ruijter, M. Voue: Curr. Opin. Coll. Interface Sci., 2001, vol. 6, pp. 49–53

    Article  Google Scholar 

  16. G.I. Cherednichenko, M.A. Al’tshuler, N.A. Terent’eva, V.P. Temnenko: Coll. J. USSR, 1984, vol. 46, pp. 162–64

    Google Scholar 

  17. C. Tszeng, P. Nash: Indust. Heat., 2001, vol. 68, pp. 12–14

    Google Scholar 

  18. A.J. Fletcher, W.D. Griffiths: Mater. Sci. Technol., 1993, vol. 9, pp. 176–82

    Google Scholar 

  19. G.E. Totten, C.E. Bates, N.A. Clinton: Handbook of Quenching and Quenching Technology, ASM INTERNATIONAL, Materials Park, OH, 1993

    Google Scholar 

  20. H.M. Tensi, K. Lainer: Harterei-Technische Mitteilungen (Germany), 1997, vol. 52, pp. 298–303

    Google Scholar 

  21. L.C.F. de Canale, M.R. Fernandes, S.C.M. Agustinho, G.E. Totten, A.F. Farah: Int. J. Mater. Product Technol., 2005, vol. 24, pp. 101–25

    Article  Google Scholar 

  22. K. Lainer, H.M. Tensi, and G.E. Totten: In 18th Heat Treating Society Conf. Proc., H. Walton and R. Wallis, eds., ASM International, Materials Park, OH, 1998, pp. 568–74

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Narayan Prabhu.

Additional information

Manuscript submitted December 23, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabhu, K., Fernandes, P. Determination of Wetting Behavior, Spread Activation Energy, and Quench Severity of Bioquenchants. Metall Mater Trans B 38, 631–640 (2007). https://doi.org/10.1007/s11663-007-9060-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-007-9060-3

Keywords

Navigation