Skip to main content
Log in

Correlation analysis of heat flux and cone calorimeter test data of commercial flame-retardant ethylene-propylene-diene monomer (EPDM) rubber

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effects of the heat flux on the thermal decomposition of the commercial flame-retardant ethylene-propylene-diene monomer rubber in a cone calorimeter with a piloted ignition were quantitatively investigated. Correlation analysis of the heat flux and various characteristic parameters, including the ignition time, the thermal thickness, the mass loss rate (MLR), the heat release rate (HRR) and the effective heat of combustion, was conducted. It was found that the transformed ignition time (1/t ig)0.55 and 1/t ig, the peak and average MLR, the first and second peak HRR, the HRR in the quasi-steady stage and the average HRR all increased linearly with the heat flux. The thermal thickness (δ P) decreased with the heat flux and was proportional to \( \rho/\dot{q}^{\prime\prime} \). The specimens under the heat fluxes ≤35 kW m−2 behaved as thermally thin solids, while the thermal decomposition behavior of the specimens under the heat fluxes >35 kW m−2 may be characterized employing the thermally thick heating model. The flammability properties including the critical heat flux, the minimum heat flux, the ignition temperature, the heat of gasification and the heat of combustion, which were calculated theoretically based upon the correlations of the ignition time data, the MLR data and the HRR data with the heat flux, were in accordance with the experimental measured values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Duggan G. Usage of ISO 5660 data in UK railway standards and fire safety cases. In: A one-day conference on fire hazards, testing, Materials and products. Shrewsbury: Rapra Technology Ltd; 1997. p. 1–8.

  2. Haack A. Fire protection in traffic tunnels: general aspects and results of the EUREKA project. Tunn Undergr Space Technol. 1998;13(4):377–81.

    Article  Google Scholar 

  3. Hong W. The progress and controlling situation of Daegu Subway fire disaster. In: Sixth Asia-Oceania symposium on fire science and technology. Daegu: International Association for Fire Safety Science; 2004. p. 17–20.

  4. Chiam BH. Numerical simulation of a metro train fire. Master Dissertation, University of Canterbury, New Zealand; 2005.

  5. Dowling V, White N, Webb A, Barnett J. When a passenger train burns, how big is the fire? Invited Lecture. In: Proceedings of the 7th Asia-Oceania symposium on fire science and technology. Hong Kong: International Association for Fire Safety Science; 2007. p. 19–28.

  6. Roh JS, Ryou HS, Park WH, Jang YJ. CFD simulation and assessment of life safety in a subway train fire. Tunn Undergr Space Technol. 2009;24(4):447–53.

    Article  Google Scholar 

  7. White N. Fire development in passenger trains. Master Dissertation, Victoria University, Australia. 2010.

  8. Kumm M. Carried Fire Load in Mass Transport Systems: A study of occurrence, allocation and fire behaviour of bags and luggage in metro and commuter trains in Stockholm. Technical Report: SiST 2010:4, Sweden: Mälardalen University Press; 2010.

  9. Lönnermark A, Lindström J, Li Y. Model-scale metro car fire tests. SP report 2011:33, SP Technical Research Institute of Sweden; 2011.

  10. Schebel K, Meacham BJ, Dembsey NA, Johann M, Tubbs J, Alston J. Fire growth simulation in passenger rail vehicles using a simplified flame spread model for integration with CFD analysis. J Fire Prot Eng. 2012;22(3):197–225.

    Article  Google Scholar 

  11. Ingason H, Kumm M, Nilsson D, Lönnermark A, Claesson A, Li YZ et al. The METRO project, final report. Technical Report: SiST 2012:8, Sweden: Mälardalen University Press; 2012.

  12. Li YZ, Ingason H, Lönnermark A. Correlations between different scales of metro carriage fire tests. In: 11th international symposium on fire safety science. Christchurch, New Zealand: International Association for Fire Safety Science; 2013.

  13. Luche J, Mathis E, Rogaume T, Richard F, Guillaume E. High-density polyethylene thermal degradation and gaseous compound evolution in a cone calorimeter. Fire Saf J. 2012;54:24–35.

    Article  CAS  Google Scholar 

  14. Luche J, Rogaume T, Richard F, Guillaume E. Characterization of thermal properties and analysis of combustion behavior of PMMA in a cone calorimeter. Fire Saf J. 2011;46(7):451–61.

    Article  CAS  Google Scholar 

  15. An W, Jiang L, Sun J, Liew K. Correlation analysis of sample thickness, heat flux, and cone calorimetry test data of polystyrene foam. J Therm Anal Calorim. 2015;119(1):229–38.

    Article  CAS  Google Scholar 

  16. Xu Q, Jin C, Griffin G, Jiang Y. Fire safety evaluation of expanded polystyrene foam by multi-scale methods. J Therm Anal Calorim. 2014;115(2):1651–60.

    Article  CAS  Google Scholar 

  17. Xu Q, Jin C, Jiang Y. Analysis of the relationship between MCC and thermal analysis results in evaluating flammability of EPS foam. J Therm Anal Calorim. 2014;118:687–93.

    Article  CAS  Google Scholar 

  18. Qu H, Liu C, Wu W, Chen L, Xu J. Using cone calorimeter to study thermal degradation of flexible PVC filled with zinc ferrite and Mg (OH)2. J Therm Anal Calorim. 2014;115(2):1081–7.

    Article  CAS  Google Scholar 

  19. Shi L, Chew MYL. Experimental study of woods under external heat flux by autoignition. J Therm Anal Calorim. 2013;111(2):1399–407.

    Article  CAS  Google Scholar 

  20. Chen X, Lu S, Li C, Zhang J, Liew KM. Experimental study on ignition and combustion characteristics of typical oils. Fire Mater. 2014;38(3):409–17.

    Article  CAS  Google Scholar 

  21. Song L, Zhou S, Wu J, Hu Y. Synergistic effects of lanthanum oxide on magnesium hydroxide flame-retarded ethylene propylene diene terpolymer composite. Polym Plast Technol. 2009;48(10):1088–93.

    Article  CAS  Google Scholar 

  22. Du L, Xu G, Zhang Y, Qian J, Chen J. Synthesis and properties of a novel intumescent flame retardant (IFR) and its application in halogen-free flame retardant ethylene propylene diene terpolymer (EPDM). Polym Plast Technol. 2011;50(4):372–8.

    Article  CAS  Google Scholar 

  23. Shen ZQ, Chen L, Lin L, Deng CL, Zhao J, Wang YZ. Synergistic effect of layered nanofillers in intumescent flame-retardant EPDM: montmorillonite versus layered double hydroxides. Ind Eng Chem Res. 2013;52(25):8454–63.

    Article  CAS  Google Scholar 

  24. Yen YY, Wang HT, Guo WJ. Synergistic effect of aluminum hydroxide and nanoclay on flame retardancy and mechanical properties of EPDM composites. J Appl Polym Sci. 2013;130(3):2042–8.

    Article  CAS  Google Scholar 

  25. Quintiere J. A theoretical basis for flammability properties. Fire Mater. 2006;30(3):175–214.

    Article  CAS  Google Scholar 

  26. Quang Dao D, Luche J, Richard F, Rogaume T, Bourhy-Weber C, Ruban S. Determination of characteristic parameters for the thermal decomposition of epoxy resin/carbon fibre composites in cone calorimeter. Int J Hydrog Energ. 2013;38(19):8167–78.

    Article  CAS  Google Scholar 

  27. Batiot B, Luche J, Rogaume T. Thermal and chemical analysis of flammability and combustibility of fir wood in cone calorimeter coupled to FTIR apparatus. Fire Mater. 2014;38(3):418–31.

    Article  CAS  Google Scholar 

  28. ISO 871. Plastics: determination of ignition temperature using a hot air furnace. 3rd ed. Geneva: International Organization for Standardization (ISO); 2006.

    Google Scholar 

  29. ISO 1716. Reaction to fire tests for products-determination of the gross heat of combustion (calorific value). 3rd ed. Geneva: International Organization for Standardization (ISO); 2010.

    Google Scholar 

  30. ISO 5660. Reaction-to-fire tests-heat release, smoke production and mass loss rate-part 1: heat release rate (cone calorimeter method). 2nd ed. Geneva: International Organization for Standardization; 2002.

    Google Scholar 

  31. Babrauskas V. The Cone Calorimeter. In: DiNenno PJ, editor. SFPE handbook of fire protection engineering. 3rd ed. Quincy: National Fire Protection Association; 2002. p. 3.63–81.

    Google Scholar 

  32. Twilley WH, Babrauskas V. User’s guide for the cone calorimeter. SP-745. Gaithersburg: National Institute of Standards and Technology; 1988.

  33. ISO 17554. Reaction to fire-mass loss measurement. Geneva: International Organization for Standardization; 1998.

    Google Scholar 

  34. Babrauskas V. Ignition handbook: principles and applications to fire safety engineering, fire investigation, risk management and forensic science. 2nd ed. Issaquah: Fire Science; 2003.

    Google Scholar 

  35. Mouritz AP, Gibson A. Fire properties of polymer composite materials. Dordrecht: Springer; 2007.

    Google Scholar 

  36. Janssens M. Piloted ignition of wood: a review. Fire Mater. 1991;15(4):151–67.

    Article  CAS  Google Scholar 

  37. Janssens M. Improved method of analysis for the LIFT apparatus, part I: ignition. In: Proceedings of the 2nd fire and materials conference. London, England: Interscience Communications; 1993. p. 37–46.

  38. Delichatsios MA. Piloted ignition times, critical heat fluxes and mass loss rates at reduced oxygen atmospheres. Fire Saf J. 2005;40(3):197–212.

    Article  CAS  Google Scholar 

  39. Janssens M, Kimble J, Murphy D. Computer tools to determine material properties for fire growth modeling from cone calorimeter data. In: 8th Proceedings of fire and materials. San Francisco, USA: Interscience Communications Limited; 2003. p. 377–87.

  40. Delichatsios M, Panagiotou T, Kiley F. The use of time to ignition data for characterizing the thermal inertia and the minimum (critical) heat flux for ignition or pyrolysis. Combust Flame. 1991;84(3):323–32.

    Article  CAS  Google Scholar 

  41. Janssens M. Fundamental thermophysical characteristics of wood and their role in enclosure fire growth. PhD dissertation, Ghent University, Belgium; 1991.

  42. Mikkola E, Wichman IS. On the thermal ignition of combustible materials. Fire Mater. 1989;14(3):87–96.

    Article  CAS  Google Scholar 

  43. Shi L, Chew MYL. Fire behaviors of polymers under autoignition conditions in a cone calorimeter. Fire Saf J. 2013;61:243–53.

    Article  CAS  Google Scholar 

  44. Karlsson B, Quintiere JG. Enclosure fire dynamics. New York: CRC Press; 2000.

    Google Scholar 

  45. Chen R, Lu S, Zhang B, Li C, Lo S. Correlation of rate of gas temperature rise with mass loss rate in a ceiling vented compartment. Chin Sci Bull. 2014;59(33):4559–67.

    Article  Google Scholar 

  46. Rhodes B, Quintiere J. Burning rate and flame heat flux for PMMA in a cone calorimeter. Fire Saf J. 1996;26(3):221–40.

    Article  CAS  Google Scholar 

  47. Rhodes B. Burning rate and flame heat flux for PMMA in the cone calorimeter. NIST-GCR-95-664. Gaithersburg: National Institute of Standards and Technology; 1994.

  48. Quintiere J, Rhodes B. Fire growth models for materials. NIST-GCR-94-647. Gaithersburg: National Institute of Standards and Technology; 1994.

  49. Hopkins D, Quintiere JG. Material fire properties and predictions for thermoplastics. Fire Saf J. 1996;26(3):241–68.

    Article  CAS  Google Scholar 

  50. Dillon S, Kim W, Quintiere JG. Determination of properties and the prediction of the energy release rate of materials in the ISO 9705 Room-corner Test. NIST-GCR-98-753. Gaithersburg: National Institute of Standards and Technology; 1998.

  51. Quintiere J, Rangwala A. A theory for flame extinction based on flame temperature. Fire Mater. 2004;28(5):387–402.

    Article  CAS  Google Scholar 

  52. Chen R, Lu S, Li C, Li M, Lo S. Characterization of thermal decomposition behavior of commercial flame-retardant ethylene-propylene-diene monomer (EPDM) rubber. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-4701-2.

    Google Scholar 

  53. Babrauskas V, Peacock RD. Heat release rate: the single most important variable in fire hazard. Fire Saf J. 1992;18(3):255–72.

    Article  CAS  Google Scholar 

  54. Thornton W. The relation of oxygen to the heat of combustion of organic compounds. Lond Edinb Dublin Philos Mag J Sci. 1917;33(194):196–203.

    Article  CAS  Google Scholar 

  55. Janssens M. Measuring rate of heat release by oxygen consumption. Fire Technol. 1991;27(3):234–49.

    Article  Google Scholar 

  56. Stoliarov SI, Crowley S, Lyon RE, Linteris GT. Prediction of the burning rates of non-charring polymers. Combust Flame. 2009;156(5):1068–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20123402110048 and 20123402120018) and National Natural Science Foundation of China (Grant Nos. 51206157 and 51323010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouxiang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Lu, S., Li, C. et al. Correlation analysis of heat flux and cone calorimeter test data of commercial flame-retardant ethylene-propylene-diene monomer (EPDM) rubber. J Therm Anal Calorim 123, 545–556 (2016). https://doi.org/10.1007/s10973-015-4900-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4900-x

Keywords

Navigation