Skip to main content
Log in

In situ synthesis of TiC-Al (Ti) nanocomposite powders by thermal plasma technology

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A novel processing technology was developed to investigate in situ synthesis of TiC-Al (Ti) nanocomposite powders by thermal plasma technology. Thermodynamic analysis was performed to predict possible starting materials and synthesizing conditions of TiC-Al (Ti) nanocomposite powders. A mathematical model was developed to describe temperature profile and velocity distribution in the reactor. The model is applied to optimize feeding rate, input power, and other processing parameters of TiC-Al (Ti) nanocomposite powders by thermal plasma technology, and to predict which materials can be used as starting materials. This paper emphasizes the investigation of the effect of feeding rate, input power, mole ratio, and other process parameters on synthesis of TiC-Al (Ti) nanocomposite powders by thermal plasma technology. The experimental results showed that TiC-Al (Ti) nanocomposite powders can be synthesized in situ by thermal plasma technology, and the average size of TiC-Al (Ti) nanocomposite powders was less than 100 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.C. Tjong and Z.Y. Ma: Rev. J. Mater. Sci. Eng., 2000, vol. 29, pp. 49–113.

    Article  Google Scholar 

  2. V.M. Kevorkijan: J. Metal., 1999, vol. 51 (11), pp. 54–58.

    CAS  Google Scholar 

  3. B. Maruyama and W.H. Hunt, Jr.: J. Metal., 1999, vol. 51 (11), pp. 59–61.

    Google Scholar 

  4. W.H. Hunt, Jr. and B. Maruyama: J. Metal., 1999, vol. 51 (11), pp. 62–64.

    Google Scholar 

  5. B. Maruyama: J. Metal., 1999, vol. 51 (11), pp. 47–55.

    Google Scholar 

  6. Q. Zheng and R.B. Reddy: J. Mater. Sci., 2004, vol. 39 (1), pp. 141–49.

    Article  Google Scholar 

  7. V.M. Kevorkijan: Adv. Mater. Progress, 1999, vol. 5, pp. 27–29.

    Google Scholar 

  8. P.R. Taylor and S.A. Pirzada: Metall. Trans. B, 1992, vol. 23B, pp. 443–51.

    CAS  Google Scholar 

  9. Q. Zheng and R.B. Reddy: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 793–804.

    CAS  Google Scholar 

  10. S. Niyomwas, B. Wu, and R.G. Reddy: Ultrafine Grained Materials, edited by B.S. Mishra, S.L. Semiatin, C. Suryanarayana, N.N. Thandhani, and T.C. Lowe. TMS, Warrendale, PA, 2000, pp. 89–98.

    Google Scholar 

  11. S. Mitrofranov, A. Mazza, and E. Pfender: Mater. Sci. Eng., 1981, vol. 48, pp. 21–26.

    Article  Google Scholar 

  12. P.R. Taylor and M. Manrique: J. Metal., 1996, vol. 6, pp. 43–45.

    Google Scholar 

  13. F. Allaire, L. Parent, and S. Dallaire: J. Mater. Sci., 1991, vol. 26, pp. 6736–40.

    Article  CAS  Google Scholar 

  14. A. Roine: “HSC Chemistry 4.1,” Chemical Reaction and Equilibrium Software with Extensive Thermodynamic Database, Outokumpu Research Oy, Finland, 1999.

    Google Scholar 

  15. N.A. Gokcen and R.G. Reddy: Thermodynamics, Plenum, New York, NY, 1996, p. 203.

    Google Scholar 

  16. R.G. Reddy: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 137–52.

    CAS  Google Scholar 

  17. L. Tong and R.G. Reddy: in Developments in Theoretical and Applied Mechanics, edited by H. Mahfuz and M.V. Hosur, Tuskegee, AL, 2004, vol. XXII, pp. 656–88.

  18. S. Niyomwas, B. Wu, and R.G. Reddy: in Materials Processing in the computer Age III, edited by V.R. Voller et al., TMS, Warrendale, PA, 2000, pp. 199–210.

    Google Scholar 

  19. L. Tong and R.G. Reddy: Scripta Mater., 2005, vol. 52, pp. 1253–58.

    Article  CAS  Google Scholar 

  20. J.P. Hirth and G.M. Pound: Condensation and Evaporation: Nucleation and Growth Kinetics, MacMillan, New York, NY, 2000, pp. 15–19.

    Google Scholar 

  21. S.K. Friedlander: Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, Oxford University Press, New York, 2000.

    Google Scholar 

  22. B.D. Cullity: Elements of X-ray Diffraction, 2nd ed. Addison-Wesley Publishing Company, Inc., U.S.A., 1978, p. 115.

    Google Scholar 

  23. C. Suryanarayana and M.G. Norton: X-ray Diffraction: A Practical Approach, Plenum, New York, NY, 1998, p. 97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, L., Reddy, R.G. In situ synthesis of TiC-Al (Ti) nanocomposite powders by thermal plasma technology. Metall Mater Trans B 37, 531–539 (2006). https://doi.org/10.1007/s11663-006-0036-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-006-0036-5

Keywords

Navigation