Skip to main content
Log in

Structure and Phase Composition of Ti–Al–Si Powder Composites at Different Synthesis Conditions

  • Published:
Russian Physics Journal Aims and scope

The paper presents the structure and phase composition of Ti−Al−Si powder composites produced in different conditions, which include vacuum sintering and self-propagating high-temperature synthesis (SHS). The certain ratios of reactive components are used in experiments for the formation of two-phase composites, matching the TiAl3 + Ti5Si3 and Ti3Al + Ti5Si3 compositions. The vacuum sintering of Ti−Al−Si powder composites provides mostly the formation of the two-phase structure, but the quantitative ratio of the appeared phases can considerably differ from the calculated compositions. The lattice parameters in these phases are rather distorted. The analysis of the synthesis in the wave mode combustion of Ti−Al−Si powder composites shows that the synthesis completes only in the TiAl3 + Ti5Si3 composite. This allows us to prepare the powder from the synthesized product. The paper analyzes the behavior of the synthesized powder based on the phase composition of the TiAl3 + Ti5Si3 composite after the vacuum sintering of the powder compacts. It is found that after the 1300°C vacuum sintering of the SHS products based on the TiAl3 + Ti5Si3 composite, its qualitative phase composition remains with a small change in the quantitative phase composition. The compaction of the SHS products is observed together with the reduction in the residual porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Knaislova, P. Novak, F. Prusa, et al., J. Alloys Compd., 810, 151895 (2019).

    Article  Google Scholar 

  2. A. Knaislova, P. Novak, M. Cabibbo, et al., J. Alloys Compd., 752, 317−326 (2018).

    Article  Google Scholar 

  3. P. Novak, F. Prusa, J. Serak, et al., J. Alloys Compd., 504, 320–324 (2010).

    Article  Google Scholar 

  4. A. Knaislova, P. Novak, S. Cygan, et al., Materials, 10, 465 (2017).

    Article  ADS  Google Scholar 

  5. Y. J. Du, K. P. Rao, J. C. Y. Chung, et al., Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 31A, 763−771 (2000).

    Article  Google Scholar 

  6. P. Novak, A. Michalcova, J. Serak, et al., J. Alloys Compd., 470, 123–126 (2009).

    Article  Google Scholar 

  7. P. Novak, J. Kriz, F. Prusa, et al., Intermetallics, 39, 11−19 (2013).

    Article  Google Scholar 

  8. N. P. Lyakishev, ed., Constitutional Diagrams of Binary Metal Systems [in Russian], in 3 vol. Vol. 1, Mashinostroenie, Moscow (1996).

  9. K. P. Rao, Y. J. Du, J. C. Y. Chung, et al., J. Mater. Process. Technol., 89−90, 361–366 (1999).

    Article  Google Scholar 

  10. A. Vyas, K. P. Rao, and Y. V. R. K. Prasad, J. Alloys Compd., 475, 252–260 (2009).

    Article  Google Scholar 

  11. F.-Y. Hsu, H.-J. Klaar, G.-X. Wang, et al., Mater. Charact., 36, No. 4–5, 371−378 (1996).

    Article  Google Scholar 

  12. P. Novak, J. Kubasek, J. Serak, et al., Int. J. Mater. Res., 100, No. 3, 353−355 (2009).

    Article  Google Scholar 

  13. M. Zha, H. Y., Wang S. T. Li, et al., Mater. Chem. Phys., 114, No. 2−3, 709−715 (2009).

    Article  Google Scholar 

  14. K. P. Rao and J. B. Zhou, Mat. Sci. Eng. A-Struct., 338, No. 1−2, 282−298 (2002).

    Article  Google Scholar 

  15. J. B. Zho and K. P. Rao, J. Alloys Compd., 384, No. 1−2, 125−130 (2004).

    Article  Google Scholar 

  16. J. B. Zhou, K. P. Rao, and C. Y. Chung, J. Mater. Process. Technol., 139, No. 1−3, 434−439 (2003).

    Article  Google Scholar 

  17. T. Zhang, G. Fan, H. Wu, et al., Mater. Design, 134, 244−249 (2017).

    Article  Google Scholar 

  18. C. R. F. Azevedo and H. M. Flower, Mater. Sci. Technol., 15, 869−877 (1999).

    Article  Google Scholar 

  19. C. R. F. Azevedo and H. M. Flower, Mater. Sci. Technol., 16, 372−381 (2000).

    Article  Google Scholar 

  20. C. R. F. Azeve do and H. M. Flower, Calphad, 26, 353−373 (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Korosteleva.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 117–123, October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korosteleva, E.N., Korzhova, V.V. Structure and Phase Composition of Ti–Al–Si Powder Composites at Different Synthesis Conditions. Russ Phys J 64, 1915–1921 (2022). https://doi.org/10.1007/s11182-022-02541-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02541-4

Keywords

Navigation