Skip to main content
Log in

A mathematical model for marangoni flow and mass transfer in electrostatically positioned droplets

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A mathematical model is developed for the free surface deformation, full three-dimensional (3-D) Marangoni convection and solute transport phenomena in electrostatically levitated droplets under microgravity. The electric field is calculated by the boundary element method and the shape deformation by the weighted residuals method. The numerical model for the transport phenomena is developed based on the Galerkin finite-element solution of the Navier-Stokes equations, the energy balance equation, and the mass transport equation. Numerical simulations are carried out for droplet deformation by electrostatic forces and 3-D Marangoni convection in droplets heated by three different heating source arrangements. Results show that the electric forces deform a droplet into an oval shape under microgravity by pulling the droplet apart at the two poles. A two-beam heating arrangement results in an axisymmetric flow and temperature distribution in the droplet. Complex 3-D Marangoni flow structure occurs when a tetrahedral or octahedral heating arrangement is applied. The thermal transport in the droplet is conduction dominant for the cases studied. In general, the convection is stronger with higher melting point melts. The internal convection has a strong effect on the concentration distribution in the droplet. For melts with high viscosities, a significant reduction in velocity can be achieved with an appropriate laser beam arrangement, thereby permitting a diffusion-controlled condition to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

radius of a sphere

C :

molar concentration

C(r i):

geometric coefficient resulting from boundary integral formulation

C p :

heat capacity

E 0 :

electric field

F :

force vector from numerical formulation

î:

unit vector of ith component

k:

thermal conductivity

Re:

Reynolds number, Re = ρVmax a d/μ

n (n r, nz):

outward normal, its r and z components

Q :

net charge on the droplet

Q c :

critical charge

Q o :

laser beam heat flux constant

r, \(\hat r\), r :

point vector, unit vector, and r coordinate

R :

distance measured from the center of the un-formed droplet

t :

tangential vector

T, T, Tr :

temperature, temperature of surroundings, reference temperature

T max, T min :

maximum and minimum temperatures

ΔT :

difference between T max and T min

U max :

maximum velocity

u :

velocity

\(\hat z\) :

unit vector of z direction

z :

z coordinate

z c :

center of mass along the z-axis

β :

thermal expansion coefficient

ɛ 0 :

permittivity of free surface or region designated by Θ2

ɛ :

emissivity

▽:

gradient operator

φ AB :

mass diffusivity coefficient

φ :

shape function of velocity

Φ:

electric potential

γ :

surface tension

κ :

geometric parameter for elliptical functions

η :

molecular viscosity

ρ :

density

θ :

shape function of temperature

ω :

shape function of pressure

ξ :

shape function of molar concentration

σ :

electrical conductivity

σ e :

surface charge distribution

σ s :

Stefan-Boltzmann constant

\(\bar \sigma \) :

stress tensor

Θ:

computational domain

d :

droplet

i :

the ith point

l :

laser beam

1:

region inside the droplet

2:

region outside the droplet

3:

region of the solute metal outside the droplet

i :

the ith component

T :

matrix transpose

References

  1. J.W.S. Rayleigh: Phil. Mag., 1882, vol. 14, pp. 184–86.

    Google Scholar 

  2. W.K. Rhim, S.K. Chung, D. Barber, K.F. Man, Gary Gutt, A. Rulison, and R.E. Spjut: Rev. Sci. Instrum., 1993, vol. 64, pp. 2961–70.

    Article  CAS  Google Scholar 

  3. P.F. Paradis and W.K. Rhim: J. Chem. Thermodyn., 2000, vol. 32, pp. 123–33.

    Article  CAS  Google Scholar 

  4. W.L. Johnson, J. Schroers, and W.K. Rhim: Materials Science Conf., Huntsville AL, 2000, pp. 307–09.

  5. L. Ratke and S. Diefenbach: Mater. Sci. Eng. Rep., 1995, vol. R15, pp. 263–347.

    Article  CAS  Google Scholar 

  6. S. Torza, R.G. Cox, and S.G. Mason: Phil. Trans. R. Soc. London A., 1971, vol. 269, pp. 295–319.

    Google Scholar 

  7. P.M. Adornato and R.A. Brown: Proc. R. Soc. London A, 1983, vol. 389, pp. 101–17.

    Google Scholar 

  8. J.Q. Feng and K.V. Beard: Proc. R. Soc. London A, 1990, vol. 430 (1878), pp. 133–50.

    Google Scholar 

  9. S.S. Sadhal, E.H. Trinh, and P. Wagner: J. Microgravity Sci. Technol., 1996, vol. 9 (2), pp. 80–95.

    CAS  Google Scholar 

  10. S.P. Song and B.Q. Li: J. Heat Transfer, 1998, vol. 120, pp. 492–504.

    CAS  Google Scholar 

  11. B.Q. Li and S.P. Song: J. Microgravity Sci. Technol., 1999, vol. XI (4), pp. 134–43.

    Google Scholar 

  12. S.P. Song, P. Dailey, and B.Q. Li: AIAA J. Thermophys. Heat Transfer, 2000, vol. 14 (3), pp. 335–62.

    Google Scholar 

  13. S.P. Song and B.Q. Li: Int. J. Heat Mass Transfer 2000, vol. 43, pp. 3589–3606.

    Article  CAS  Google Scholar 

  14. S.P. Song and B.Q. Li: Int. J. Comp. Fluid Dyn. 2001, vol. 15, pp. 293–308.

    Google Scholar 

  15. S.P. Song and B.Q. Li: Int. J. Magnetohydrodyn., 2001, vol. 37, pp. 62–70.

    Google Scholar 

  16. J.D. Jackson: Classical Electrodynamics, 2nd ed., Wiley, New York, NY, 1975

    Google Scholar 

  17. S.P. Song and B.Q. Li: in Boundary Element Technology, J.I. Frankel, ed., Computational Publications, Southampton, United Kingdom, 1997, vol. XII, pp. 239–49

    Google Scholar 

  18. S.P. Song and B.Q. Li: Int. J. Num. Methods Eng., 1999, vol. 44, pp. 1055–77.

    Article  Google Scholar 

  19. Y. Huo and B.Q. Li: Int. J. Heat Mass Transfer, 2004, vol. 47, pp. 3533–47.

    Article  Google Scholar 

  20. M. Bastian and B.Q. Li: J. Finite Elements Analysis Des., 2003, vol. 39 (9), pp. 905–30.

    Article  Google Scholar 

  21. E. Bakke, R. Busch, and W.L. Johnson: Phys. Rev. B, Appl. Phys. Lett., 1999, vol. 67 (27), pp. 3260–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huo, Y., Li, B.Q. A mathematical model for marangoni flow and mass transfer in electrostatically positioned droplets. Metall Mater Trans B 36, 271–281 (2005). https://doi.org/10.1007/s11663-005-0029-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-005-0029-9

Keywords

Navigation