Skip to main content
Log in

The effects of alkaline earth metal ions and halogen ions on the chromium oxide activities in alkaline earth metal oxide-halide-Cr2O3 system fluxes

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The solid electrolyte cell — Mo|Cr + Cr2O3‖ZrO2(MgO)‖{Cu-Cr}alloy + (Cr2O3)fluxes|Mo+ is used at 1673 K to determine Cr2O3 activities in MO-MX 2-Cr2O3 (M = Ca2+, Ba2−, X = F or Cl) ternary fluxes, which are in equilibrium with the copper-chromium binary alloy. The ternary isothermal phase diagrams of CaO-CaF2-Cr2O3 and BaO-BaCl2-Cr2O3 system fluxes are inferred on the basis of the experimental results and binary phase diagrams. The results indicate that Cr2O3 activities in all fluxes always decrease with the increase of the X MO /X MX2 ratio. Partial replacement of BaO in BaO-BaF2-Cr2O3 fluxes by CaO is acceptable for economy and efficiency considerations. At the same time, partial substitution of BaO for CaO in CaO-CaF2-Cr2O3 fluxes is advantageous for phosphorus removal and chromium retention as a result of the increased Cr2O3 activities, increased basicities, and widening of the liquid zones. Compared to those in BaO-BaF2-Cr2O3 fluxes, Cr2O3 activities in CaO-CaF2-Cr2O3 fluxes approximately follow the same curve as the former, although the position and the width of the liquid zones are considerably different, and activities in BaO-BaCl2-Cr2O3 fluxes are higher at the lower Cr2O3 content, or vice versa. The activity coefficients of Cr2O3 in the fluxes decrease with the increase of the X MO /X MX 2 ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Matsuo, K. Maya, and K. Kamegawa: Tetsu-to-Hagané, 1992, vol. 78, pp. 231–38 (in Japanese).

    CAS  Google Scholar 

  2. K. Marukawa, Y. Shirota, S. Anezaki, and H. Hirahara: Tetsu-to-Hagané, 1981, vol. 67, pp. 323–32 (in Japanese).

    CAS  Google Scholar 

  3. J.-C. Wrampelmeyer, A.R. Romero, and D. Janke: Arch. Eisenhüttenwes., 1984, vol. 55, pp. 515–20.

    CAS  Google Scholar 

  4. L.-F. Li: Ph.D. Dissertation, Northeastern University, Shenyang, 1998, pp. 33–62 (in Chinese).

    Google Scholar 

  5. S. Inoue, T. Usui, K. Yamada, and K. Takahashi: Trans. Iron Steel Inst. Jpn., 1988, vol. 28, pp. 192–97.

    CAS  Google Scholar 

  6. L.-F. Li, M.-F. Jiang, C.-J. Jin, W.-Z. Wang, and Z.-P. Chen: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 451–57.

    Article  CAS  Google Scholar 

  7. A.K. Mohanty and D.A.R. Kay: Metall. Trans. B, 1975, vol. 6B, pp. 159–66.

    CAS  Google Scholar 

  8. T.K. Inouye, H. Fujiwara, E. Ichise, and M. Iwase: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 695–701.

    CAS  Google Scholar 

  9. M. Iwase, E. Ichise, M. Takeuchi, and T. Yamasaki: Trans. J. Inst. Met., 1984, vol. 25 (2), pp. 43–45.

    CAS  Google Scholar 

  10. D.J. Chakrabarti and D.E. Laughlin: Bull. Alloy Phase Diagrams, 1984, vol. 5, pp. 59–68.

    CAS  Google Scholar 

  11. T.K. Inouye, H. Fujiwara, and M. Iwase: Metall. Trans. B, 1991, vol. 22B, pp. 475–80.

    CAS  Google Scholar 

  12. Y.-J. Liang, Y.-C. Che, and X.-X. Liu: Thermodynamic Data Handbook of Inorganic Compounds, Northeastern University Press, Shenyang, 1994, Part 4, p. 515 (in Chinese).

    Google Scholar 

  13. T. Rosenqvist: Principles of Extractive Metallurgy, McGraw-Hill Book Company, New York, NY, 1983, p. 46.

    Google Scholar 

  14. W.Z. Yuan: Inorganic Chemistry, Higher Education Press, Beijing, 1988, vol. 2, p. 26 and 146 (in Chinese).

    Google Scholar 

  15. L. Brewer: National Nuclear Energy Series, Manhattan Project Technical Section, New York, NY, 1966, p. 193.

    Google Scholar 

  16. M.W. Davies: Chemical Metallurgy of Iron and Steel, Proc. Int. Symp. on Metall. Chem., Appl. Ferrous metall., Iron and Steel Institute, London, 1971, pp. 43–51.

    Google Scholar 

  17. R.C. Doman, J.B. Barr, R.N. McNally, and A.M. Alper: J. Am. Ceram. Soc., 1974, vol. 46, p. 317.

    Google Scholar 

  18. T. Nakamura, Y. Ueda, and J.M. Toguri: J. Jpn. Inst. Met., 1986, vol. 50 (5), pp. 456–61 (in Japanese).

    CAS  Google Scholar 

  19. C. Nassaralla, R.J. Fruehan, and D.J. Min: Metall. Trans. B, 1991, vol. 22B, pp. 33–38.

    CAS  Google Scholar 

  20. B. Neumann, C. Kroeger, and H. Juettner: Z. Elektrochemie, 1935, vol. 41, p. 727 (in German).

    Google Scholar 

  21. Goldeev and V.I. Serdyukev: Inorg. Mater., 1967, vol. 3, p. 1440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, LF., Jiang, MF., Wang, WZ. et al. The effects of alkaline earth metal ions and halogen ions on the chromium oxide activities in alkaline earth metal oxide-halide-Cr2O3 system fluxes. Metall Mater Trans B 31, 469–475 (2000). https://doi.org/10.1007/s11663-000-0153-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-000-0153-5

Keywords

Navigation