Skip to main content
Log in

The fatigue and fracture resistance of a Nb-Cr-Ti-Al alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure, fatigue, and fracture behaviors of a cast and heat-treated Nb-Cr-Ti-Al alloy were investigated. The microstructure of the cast alloy was manipulated by annealing at a temperature ranging from 500 °C to 1500 °C for 1 to 24 hours. The heat treatment produced Cr2Nb precipitates along grain boundaries in all cases except in the 500 °C heat-treated material. Fracture toughness tests indicated low fracture resistance in both the as-cast and heat-treated materials. Fatigue crack growth tests performed on the 500 °C heat-treated material also indicated a low fatigue crack growth resistance. Direct observations of the near-tip region revealed a cleavage-dominated fracture process, in accordance with fractographic evidence. The fracture behavior of the Nb-Cr-Ti-Al alloy was compared to that of other Nb-Cr-Ti alloys. In addition, theoretical calculations of both the unstable stacking energy (USE) and Peierls-Nabarro (P-N) barrier energy are used to elucidate the role of Al additions in cleavage fracture of the Nb-Cr-Ti-Al alloy. The results indicate that an Al alloying addition increases the USE, which, in turn, prevents the emission of dislocations, promotes the nucleation and propagation of cleavage cracks from the crack tip, and leads to a reduction in the fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Chan: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2518–31.

    CAS  Google Scholar 

  2. D.L. Davidson, K.S. Chan, and D.L. Anton: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3007–18.

    CAS  Google Scholar 

  3. K.S. Chan and D.L. Davidson: JOM, 1996, vol. 48 (9), pp. 62–68.

    CAS  Google Scholar 

  4. R.M. Nekkanti and D.M. Dimiduk: Mater. Res. Soc. Symp. Proc., 1990, vol. 194, pp. 175–82.

    CAS  Google Scholar 

  5. M.G. Mendiratta and D.M. Dimiduk: Metall. Trans. A, 1993, vol. 24A, pp. 501–04.

    CAS  Google Scholar 

  6. J.D. Rigney, P.M. Singh, and J.J. Lewandowski: JOM, 1992, vol. 44(8), pp. 36–41.

    CAS  Google Scholar 

  7. J. Kajuch, J. Short, and J.J. Lewandowski: Acta Metall. Mater., 1995, vol. 43, pp. 1955–67.

    Article  CAS  Google Scholar 

  8. J. Dipasquale, D. Gahutu, D. Konitzer, and W. Soboyejo: Materials Research Society Proceedings, Materials Research Society, Pittsburgh, PA, 1995, vol. 364, pp. 1347–52.

    Google Scholar 

  9. M.R. Jackson and K.D. Jones: in Refractory Metals: Extraction, Processing and Applications, K. Nona, C. Kiddell, D.R. Sadoway, and R.G. Bautista, eds., TMS, Warrendale, PA, 1990, pp. 311–19.

    Google Scholar 

  10. P.R. Subramanian, M.G. Mendiratta, and D.M. Dimiduk: JOM, 1996, vol. 48, pp. 33–38.

    CAS  Google Scholar 

  11. P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk, and M.A. Stucke: Mater. Sci. Eng., 1997, vol. A239–240, pp. 1–13.

    Google Scholar 

  12. M.R. Jackson, B.P. Bewlay, R.G. Rowe, D.W. Skelly, and H.A. Lipsitt: JOM, 1996, vol. 48, pp. 39–44.

    CAS  Google Scholar 

  13. B.P. Bewlay, M.R. Jackson, and H.A. Lipsitt: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3801–08.

    Article  CAS  Google Scholar 

  14. D.L. Anton and D.M. Shah: MRS Symp. Proc., 1990, vol. 194, pp. 175–82.

    Google Scholar 

  15. D.J. Thoma: Ph.D. Thesis, University of Wisconsin, Madison, WI, 1992, available from University Microfilms, Ann Arbor, MI.

    Google Scholar 

  16. K.S. Chan and D.L. Davidson: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 925–39.

    CAS  Google Scholar 

  17. K.C. Chen, D.J. Thoma, P.G. Kotula, F. Chu, C.M. Cady, G.T. Gray, P.S. Dunn, D.R. Korzekwa, C. Mercer, and W. Soboyejo: 3rd Pacific Rim Int. Conf. on Advanced Materials and Processing, M.A. Imam, R. DeNale, S. Hanada, Z. Zhong, and D.N. Lee, eds., TMS, Warrendale, PA, 1998, pp. 1431–36.

    Google Scholar 

  18. A. Nagy, J.B. Campbell, and D.L. Davidson: Rev. Sci. Instrum., 1984, vol. 55, pp. 778–82.

    Article  Google Scholar 

  19. E.A. Franke, D.J. Wenzel, and D.L. Davidson: Rev. Sci. Instrum., 1990, vol. 62 (5), pp. 1270–79.

    Article  Google Scholar 

  20. J.R. Rice: J. Mech. Phys. Solids, 1992, vol. 40, pp. 239–71.

    Article  CAS  Google Scholar 

  21. R.E. Peierls: Proc. Phys. Soc., 1940, vol. 52, pp. 34–37.

    Article  Google Scholar 

  22. F.R.N. Nabarro: Proc. Phys. Soc., 1947, vol. 59, pp. 236–394.

    Article  Google Scholar 

  23. J.N. Wang: Mater. Sci. Eng. A, 1996, vol. A206, pp. 259–69.

    CAS  Google Scholar 

  24. J.N. Wang: Acta Mater., 1996, vol. 44, pp. 1541–46.

    Article  CAS  Google Scholar 

  25. D.L. Davidson: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1297–1314.

    CAS  Google Scholar 

  26. T.G. Li, P.A. Blenkinsop, M.H. Loretto, and N.A. Walker: Mater. Sci. Technol., 1998, vol. 14, pp. 732–37.

    CAS  Google Scholar 

  27. R. Grylls, S. Perungulan, H.A. Lipsitt, H.L. Faser, R. Wheeler, and S. Banerjee: Paper presented at ’98 TMS Annual Meeting, San Antonio, TX, Feb. 15–19, 1998.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, D.L., Chan, K.S. The fatigue and fracture resistance of a Nb-Cr-Ti-Al alloy. Metall Mater Trans A 30, 2007–2018 (1999). https://doi.org/10.1007/s11661-999-0011-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0011-2

Keywords

Navigation