Skip to main content
Log in

Pseudoelastic behavior of a CuAlNi single crystal under uniaxial loading

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In order to study the basic properties of pseudoelasticity of a CuAlNi single crystal, an investigation was carried out to observe and analyze the orientation dependence of the stress-induced martensitic transformation. The transformation is the β 1 to β1 stress-induced transformation in a Cu-13.7 pct Al-4.18 pct Ni (wt pct) alloy. From the uniaxial tension of three groups of differently oriented flat specimens, we obtained a series of stress-strain curves. In addition, the micrograph of martensitic evolution was observed by utilizing a long-focus microscope. It is found that martensite appears in the shape of bands or thin plates on the surface of the specimen. The formation of martensite is a very quick process, and martensite “jumps” out until the specimen is completely transformed into a single variant. The experimental results are analyzed and compared to a constitutive model proposed recently. It is found that the constitutive model cannot describe transformation hardening, since the model ignores the surface-energy change. Nevertheless, the proposed constitutive model cannot only precisely predict the forward and reverse transformation, but can also characterize the stress-strain hysteresis behavior during pseudoelastic deformation under uniaxial tension loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Wechsler, D.S. Lieberman, and T.A. Read: Trans. AIME, 1953, vol. 197, pp. 1503–15.

    Google Scholar 

  2. C.M. Wayman: Introduction to the Crystallography of Martensite Transformation, The MacMillan Co., New York, NY, 1964.

    Google Scholar 

  3. J.S. Bowles and J.K. Mackenzie: Acta Metall., 1954, vol. 2, pp. 129–37.

    Article  CAS  Google Scholar 

  4. L. Delaey, R.V. Krishnan, H. Tas, and H. Warlimont: J. Mater. Sci., 1974, vol. 9, pp. 1521–55.

    Article  CAS  Google Scholar 

  5. J.W. Christian: Metall. Trans. A, 1982, vol. 13A, pp. 509–38.

    Google Scholar 

  6. R.D. James: J. Mech. Phys. Solids, 1986, vol. 34, pp. 359–94.

    Article  Google Scholar 

  7. J.M. Ball and R.D. James: Arch. Rat. Mech. Anal., 1987, vol. 100, pp. 13–52.

    Article  Google Scholar 

  8. K. Bhattacharya: Acta Metall., 1991, vol. 39, pp. 2431–44.

    Article  CAS  Google Scholar 

  9. R. Abeyaratne and J.K. Knowles: J. Mech. Phys. Solids, 1993, vol. 41, pp. 541–71.

    Article  Google Scholar 

  10. R., Abeyaratne, C. Chu, and R.D. James: ASME Appl. Mech. Div., 1994, vol. 189, pp. 85–98.

    CAS  Google Scholar 

  11. F. Falk: Acta Metall., 1980, vol. 28, pp. 1773–80.

    Article  CAS  Google Scholar 

  12. E. Patoor, T.A. Eberhard, and M. Berveiller: Arch. Mech., 1988, vol. 40, pp. 775–94.

    CAS  Google Scholar 

  13. I. Muller and H. Xu: Acta Metall., 1991, vol. 39, pp. 263–71.

    Article  Google Scholar 

  14. C. Chu and R.D. James: ASME Appl. Mech. Div., 1993, vol. 181, pp. 61–69.

    Google Scholar 

  15. K. Tanaka, E.R. Oberaigner, and F.D. Fischer: in Mechanics of Phase Transformations and Shape Memory Alloys, L.C. Brinson and B. Moran, ed., ASME, Fairfield, NJ, 1994, AMD-vol. 189/PVP-vol. 292, pp. 151–57.

    Google Scholar 

  16. K. Tanaka, F. Nishimura, F.D. Fischer, and E.R. Oberaigner: Proc. MECAMAT 95, C. Lexcellent, E. Patoor, and E. Gautier, eds., J. Phys. Coll. 1, Suppl. J. Phys. III, Les Editions De Physique, Les Ulis, 1996, vol. 6 C1-455/C1-463.

    Google Scholar 

  17. C. Liang and C.A. Rogers: J. Eng. Math., 1992, vol. 26, pp. 429–43.

    Article  Google Scholar 

  18. Q.P. Sun and K.C. Hwang: J. Mech. Phys. Solids, 1993, vol. 41, pp. 1–33.

    Article  CAS  Google Scholar 

  19. Q.P. Sun and K.C. Hwang: Adv. Appl. Mech., 1994, vol. 31, pp. 249–98.

    Article  Google Scholar 

  20. F.D. Fischer, Q.P. Sun, and K. Tanaka: ASME Appl. Mech. Rev., 1996, vol. 49, pp. 317–64.

    Google Scholar 

  21. F.D. Fischer, E.R. Oberaigner, K. Tanaka, and F. Nishimural: Int. J. Solids Struct., 1998, vol. 35, pp. 2209–27.

    Article  Google Scholar 

  22. W. Yan, Q.P. Sun, and K.C. Hwang: Proc. 3rd Asia-Pacific Symp. on Advances in Engineering Plasticity and Its Application, 21–24 August, 1996, Hiroshima, Japan, T. Abe and T. Tsuta eds., Pergamon, Amsterdam-Oxford-New York-Tokyo, pp. 9–14.

    Google Scholar 

  23. W. Yan, Q.P. Sun, and K.C. Hwang: Int. J. Plasticity, 1997, vol. 13, pp. 201–13.

    Article  CAS  Google Scholar 

  24. W. Yan, Q.P. Sun, and K.C. Hwang: Sci. China, 1998, vol. A28, pp. 275–82.

    Google Scholar 

  25. X. Chen, D.N. Fang, and K.C. Hwang: Acta Material., 1997, vol. 45, pp. 3181–89.

    Article  CAS  Google Scholar 

  26. G.Q. Song, Q.P. Sun, and K.C. Hwang: IUTAM Symp. on Variations of Domains and Free Boundary Problems, P. Argoul, M. Fremond, and Q.S. Nguyen, eds., 22–25 April, 1997, Paris, France, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999, pp. 25–34.

    Google Scholar 

  27. Z.K. Lu and G.J. Weng: J. Mech. Phys. Solid., 1997, vol. 45, pp. 1905–28.

    Article  CAS  Google Scholar 

  28. K. Okamoto, S. Ichinose, K. Morii, K. Otsuka, and K. Shimizu: Acta Metall., 1986, vol. 34, pp. 2065–73.

    Article  CAS  Google Scholar 

  29. H. Horikawa, S. Ichinose, K. Morii, S. Miyazaki, and K. Otsuka: Metall. Trans. A, 1988, vol. 19A, pp. 915–23.

    CAS  Google Scholar 

  30. T.W. Shield: J. Mech. Phys. Solids, 1995, vol. 43, pp. 869–95.

    Article  CAS  Google Scholar 

  31. E.S. Machlin and S. Wenig: Acta Metall., 1953, vol. 1, pp. 480–89.

    Article  CAS  Google Scholar 

  32. R.V. Krishnan and C. Brown: Metall. Trans., 1973, vol. 4, pp. 423–29.

    CAS  Google Scholar 

  33. S. Ichinose, Y. Funatsu, and K. Otsuka: Acta Metall., 1985, vol. 33, pp. 1613–25.

    Article  CAS  Google Scholar 

  34. M. Suezawa and K. Sumino: Scripta Metall., 1976, vol. 10, pp. 789–96.

    Article  CAS  Google Scholar 

  35. G.V. Kurdjumov and L.G. Khandros: Dokl. Akad. Nauk SSSR, 1949, vol. 66, pp. 211–24.

    Google Scholar 

  36. M.J. Duggin and W.A. Rachinger: Acta Metall., 1964, vol. 12, pp. 529–38.

    Article  CAS  Google Scholar 

  37. K. Otsuka, C.M. Wayman, K. Nakai, H. Sakamoto, and K. Shimizu: Acta Metall., 1976, vol. 24, pp. 207–18.

    Article  CAS  Google Scholar 

  38. K. Oishi and C. Brown: Metall. Trans., 1971, vol. 2, pp. 1971–77.

    CAS  Google Scholar 

  39. K. Otsuka and K. Shimizu: Trans. JIM, 1974, vol. 15, pp. 201–10.

    Google Scholar 

  40. H.B. Xu, S.L. Fu, and S.S. Tan: Z. Metallkd., 1993, vol. 84, pp. 469–77.

    CAS  Google Scholar 

  41. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1897–1904.

    CAS  Google Scholar 

  42. T. Mori and K. Tanaka: Acta Metall., 1973, vol. 21, pp. 571–74.

    Article  Google Scholar 

  43. T. Mura: Micromechanics of Defects in Solid, Martinus Nijhoff, Dordrecht, 1987.

    Google Scholar 

  44. J.R. Rice: J. Mech. Phys. Solids, 1971, vol. 19, pp. 433–55.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, DN., Hwang, KC. & Lu, W. Pseudoelastic behavior of a CuAlNi single crystal under uniaxial loading. Metall Mater Trans A 30, 1933–1943 (1999). https://doi.org/10.1007/s11661-999-0004-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0004-1

Keywords

Navigation