Skip to main content
Log in

The effect of impact damage on the room-temperature fatigue behavior of γ-TiAl

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The relationship between impact damage and the fatigue behavior of γ-TiAl has been examined. Axial fatigue specimens fabricated from cast Ti-47.9Al-2.0Cr-1.9Nb (to be referred to as 48-2-2) and Ti-47.3Al-2.2Nb-0.5Mn-0.4W-0.4Mo-0.23Si (to be referred to as WMS) alloys were damaged by impact under controlled conditions with a 60 deg wedge-shaped indenter to simulate assembly-related damage in low-pressure turbine blades. The level of damage produced was quantified and found to correlate well with the peak load of the impact event. The WMS alloy exhibited a greater resistance to impact damage due to its higher yield strength and lamellar microstructure. A measure of the ambient-temperature fatigue failure stress in the alloys was obtained by standard fatigue testing employing a step-loading approach. The failure stress of the WMS alloy was greater than that of the 48-2-2 alloy in the undamaged state. The relationship between impact damage and failure stress was examined using a threshold-based approach. These studies indicate that, for damage levels below a transitional flaw size, the failure stress is near that for undamaged specimens. At damage levels greater than the transitional flaw size, the failure stress can be adequately approximated using the threshold stress-intensity range (ΔK TH ) from long-crack growth testing. Fractographic studies were performed to investigate impact damage and crack-advance mechanisms, which match those observed in other alloys tested at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Austin and T.J. Kelly: Structural Intermetallics, TMS Symp. Proc., R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 143–50.

    Google Scholar 

  2. S.C. Huang and J.C. Chesnutt: in Intermetallic Compounds: Vol. 2, Practice, J.H. Westbrook and R.L. Fleischer, eds., John Wiley & Sons, New York, NY, 1994, pp. 73–90.

    Google Scholar 

  3. J. Kumpfert, Y.-W. Kim, and D.M. Dimiduk: Mater. Sci. Eng. A, 1995, vols. 192–193, pp. 465–73.

    Google Scholar 

  4. S.J. Balsone, J.M. Larsen, D.C. Maxwell, and J.W. Jones: Mater. Sci. Eng. A, 1995, vols. 192–193, pp. 457–64.

    Google Scholar 

  5. B.D. Worth, J.M. Larsen, S.J. Balsone, and J.W. Jones: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 825–35.

    Article  CAS  Google Scholar 

  6. K.T. Venkataswara Rao, Y.-W. Kim, C.L. Muhlstein, and R.O. Ritchie: Mater. Sci. Eng. A, 1995, vols. 192–193, pp. 474–82.

    Google Scholar 

  7. B.A. Cowles: Int. J. Fract., 1996, vol. 80, pp. 147–63.

    Article  CAS  Google Scholar 

  8. F.K. Haake, G.C. Salivar, E.H. Hindle, J.W. Fischer, and C.G. Annis, Jr.: Air Force Report No. WRDC-TR-89-4085, Materials Laboratory, Wright Research Development Center, WPAFB, OH, 1989.

  9. J.M. Larsen, B.D. Worth, C.G. Annis, Jr., and F.K. Haake: Int. J. Fract., 1996, vol. 80, pp. 103–45.

    Google Scholar 

  10. T. Nicholas, J.P. Barber, and R.S. Bertke: Exp. Mech., 1980, vol. 20 (10), pp. 357–64.

    Article  Google Scholar 

  11. S.C. Huang: U.S. Patent 5,076,858, 1991.

  12. P.R. Bhowal, H.F. Merrick, and D.E. Larsen, Jr.: Mater. Sci. Eng. A, 1995, vols. 192–193, pp. 685–90.

    Google Scholar 

  13. C. Austin: General Electric Aircraft Engines, Cincinnati, OH, private communication, 1995.

  14. J. LaSalle: Allied Signal, Morristown, NJ, private communication, 1997.

  15. K.S. Chart and Y.-W. Kim: Metall. Trans. A, 1993, vol. 24, pp. 113–25.

    Google Scholar 

  16. J.A. Collins: Failure of Materials in Mechanical Design, John Wiley & Sons, New York, NY, 1993, pp. 379–81.

    Google Scholar 

  17. E.J. Dolley, N.E. Ashbaugh, and B.D. Worth: Fatigue ’96: Proc. 6th Int. Fatigue Congr. G. Lütjering and H. Nowack, eds., Pergamon Press, Elmsford, NY, 1996, vol. III.

    Google Scholar 

  18. R.E. Peterson: Stress Concentration Factors, John Wiley & Sons, New York, NY, 1974.

    Google Scholar 

  19. R.A. Smith and K.J. Miller: Int. J. Mech. Sci., 1978, vol. 20, pp. 201–06.

    Article  Google Scholar 

  20. R.A. Smith and K.J. Miller: Int. J. Mech. Sci., 1977, vol. 19, pp. 11–22.

    Article  Google Scholar 

  21. B.D. Worth and J.M. Larsen: Materials Directorate, Wright Patterson Air Force Base, OH, unpublished research, 1997.

  22. H. Kitagawa and S. Takahashi: Proc. 2nd Int. Conf. on Mechanical Behavior of Metals, Boston, MA, American Society for Metals, Metals Park, OH, 1976, pp. 627–31.

    Google Scholar 

  23. M. Rubal and P.S. Steif: PRET: A University-Industry Partnership for Research and Transition of Gamma Titanium Aluminides Annual Report, Carnegie Mellon University, Pittsburgh, PA, 1997.

    Google Scholar 

  24. K.L. Johnson: Contact Mechanics, Cambridge University Press, Cambridge, United Kingdom, 1985.

    Google Scholar 

  25. A.N. Stroh: Adv. Phys., 1957, vol. 6, pp. 418–56.

    Google Scholar 

  26. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill Book Co., New York, NY, 1986, pp. 181–82.

    Google Scholar 

  27. K.S. Chan and Y.-W. Kim: Metall. Trans. A, 1992, vol. 23A, pp. 1663–77.

    CAS  Google Scholar 

  28. T.M. Pollock, D.R. Mumm, K. Muraleedharan, and P.L. Martin: Scripta Metall. Mater., 1996, vol. 35, pp. 1311–16.

    CAS  Google Scholar 

  29. K.S. Chan: Metall. Trans. A, 1993, vol. 24A, pp. 569–83.

    CAS  Google Scholar 

  30. K.S. Chan and Y.-W. Kim: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1217–28.

    CAS  Google Scholar 

  31. N.J. Rogers and P. Bowen: Structural Intermetallics, TMS Symp. Proc., R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 231–40.

    Google Scholar 

  32. M. Yamaguchi: Mater. Sci. Technol., 1992, vol. 8, pp. 299–307.

    CAS  Google Scholar 

  33. R. G.na.namoorthy, Y. Mutoh, K. Hayashi, and Y. Mizuhara: Scripta Metall. Mater., 1995, vol. 33, pp. 907–12.

    Article  CAS  Google Scholar 

  34. D.L. Davidson and J.B. Campbell: Metall. Trans. A, 1993, vol. 24A, pp. 1555–74.

    CAS  Google Scholar 

  35. P. Bowen, R.A. Chave, and A.W. James: Mater. Sci. Eng. A, 1995, vols 192–193, pp. 443–56.

    Google Scholar 

  36. H. Shiota, K. Tokaji, and Y. Ohta: Mater. Sci. Eng. A, 1998, vol. 243, pp. 169–75.

    Article  Google Scholar 

  37. K.S. Chan: JOM, 1992, vol. 44, pp. 30–38.

    CAS  Google Scholar 

  38. K.J. Miller: Fatigue ’96: Proc. 6th Int. Fatigue Congr., G. Lütjering and H. Nowack, eds., Pergamon Press, Elmsford, NY, 1996, vol. I, pp. 253–64.

    Google Scholar 

  39. J. Lankford: Fatigue Fract. Eng. Mater. Struct., 1985, vol. 8, pp. 161–75.

    Article  Google Scholar 

  40. K. Tanaka and Y. Akiniwa: Fatigue ’96: Proc. 6th Int. Fatigue Congr., G. Lütjering and H. Nowack, eds., Pergamon Press, Elmsford, NY, 1996, vol. I, pp. 27–38.

    Google Scholar 

  41. A. Bartels, C. Koeppe, and H. Mecking: Mater. Sci. Eng. A, 1995, vols. 192–193, pp. 226–32.

    Google Scholar 

  42. J.M. Larsen, B.D. Worth, S.J. Balsone, A.H. Rosenberger, and J.W. Jones: Fatigue ’96: Proc. 6th Int. Fatigue Congr., G. Lütjering and H. Nowack, eds., Pergamon Press, Elmsford, NY, 1996, vol. III, pp. 1719–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harding, T.S., Wayne Jones, J. The effect of impact damage on the room-temperature fatigue behavior of γ-TiAl. Metall Mater Trans A 31, 1741–1752 (2000). https://doi.org/10.1007/s11661-998-0329-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0329-1

Keywords

Navigation