Skip to main content
Log in

A model for creep-fatigue interaction in terms of crack-tip stress relaxation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A model was developed to explain the mechanism of the degradation of fatigue lives caused by the growth of transgranular crack without cavitational damage in spite of the creep-fatigue loading condition for some type 304L stainless steel and 1Cr-Mo-V steel. The model was developed by incorporating the stress relaxation effect during tensile hold time into the pure fatigue crack growth model based on the crack-tip shearing process. In the crack-tip region, the stress relaxation during hold time at the tensile peak stress reduces the maximum stress level but accumulates inelastic strain, which induces creep crack growth during hold time and enhances subsequent fatigue crack growth during subsequent loading by promoting the crack-tip shearing process. The predicted creep-fatigue lives by the model were in good agreement with the actual lives for type 304L stainless steel at 823 and 865 K and for 1Cr-Mo-V rotor steel at 823 K. The model was further expanded to explain the degradation of the life under the conditions of compressive hold cycling for 1Cr-Mo-V and 12Cr-Mo-V steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wareing: in Fatigue at High Temperature, R.P. Skelton, ed., Applied Science Publishers, London, 1983, pp. 135–85.

    Google Scholar 

  2. J.W. Hong, S.W. Nam, and K.-T. Rie: J. Mater. Sci., 1985, vol. 20, pp. 3763–70.

    Article  Google Scholar 

  3. S.W. Nam, Y.C. Yoon, B.G. Choi, J.M. Lee, and J.W. Hong: Metall. Trans. A, 1996, vol. 27A, pp. 1273–81.

    CAS  Google Scholar 

  4. J. Weiss and A. Pineau: Metall. Trans. A, 1993, vol. 24A, pp. 2247–61.

    CAS  Google Scholar 

  5. R. Neu and H. Sehitoglu: Metall. Trans. A, 1989, vol. 20A, pp. 1755–67.

    CAS  Google Scholar 

  6. K.-T. Rie and J. Olfe: Proc. Mechanical Behavior of Materials—VI, Pergamon Press, plc, Headington Hill Hall, Oxford OX3 OBW, UK, 1992, pp. 367–72.

    Google Scholar 

  7. L.A. James: Nucl. Technol., 1972, vol. 16, pp. 521–30.

    CAS  Google Scholar 

  8. B. Tomkins and J. Wareing: Mater. Sci., 1977, pp. 414–24.

  9. M. Okazaki, I. Hattori, and T. Koizumi: Metall. Trans. A, 1984, vol. 15A, pp. 1731–39.

    Google Scholar 

  10. Z.G. Wang, C. Laird, and K. Rahka: Mater. Sci. Eng., 1985, vol. 73, pp. 113–29.

    Article  CAS  Google Scholar 

  11. J.H. Ryu and S.W. Nam: Proc., 1st Conf. on Mechanical Behavior, The Kor. Inst. Met. & Mater., Seoul, Korea, 1987, p. 33.

    Google Scholar 

  12. S.W. Nam, S.C. Lee, and J.M. Lee: Nucl. Eng. Design, 1995, vol. 153, pp. 213–21.

    Article  CAS  Google Scholar 

  13. A. Saxena, R.S. Willains, and T.T. Shih: in Fracture Mechanics: 13th Conf., ASTM STP 770, ASTM, Philadelphia, PA, 1981, pp. 86–99.

    Google Scholar 

  14. P.S. Grover and A. Saxena: Fat. Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 111–22.

    Article  Google Scholar 

  15. N. Adefris, A. Saxena, and D.L. McDowell: Fat. Fract. Eng. Mater. Struct., 1996, vol. 19, pp. 387–99.

    Article  CAS  Google Scholar 

  16. J.K. Tien, S.V. Nair, and V.C. Nardone: in Flow and Fracture at Elevated Temperatures, ASM Material Science Seminar, ASM, Materials Park, OH, 1983, pp. 179–213.

    Google Scholar 

  17. R.P. Skelton: in ESIS 15, R.A. Ainsworth and R.P. Skelton, eds., Mechanical Engineering Publication, London, 1993, pp. 191–218.

    Google Scholar 

  18. Y.J. Oh and S.W. Nam: Scipta Metall., 1992, vol. 26, pp. 643–48.

    CAS  Google Scholar 

  19. Y.J. Oh and S.W. Nam: J. Mater. Sci., 1992, vol. 27, pp. 2019–25.

    Article  CAS  Google Scholar 

  20. J.R. Haigh, R.P. Skelton, and C.E. Richards: Mater. Sci. Eng., 1976, vol. 26, pp. 167–74.

    Article  CAS  Google Scholar 

  21. K. Wada, Y. Lino, and M. Suzuki: Low Cycle Fatigue and Life Prediction, ASTM STP 770, ASTM, Philadelphia, PA, 1980, pp. 422–35.

    Google Scholar 

  22. D. Tomkins: Phil. Mag., 1968, vol. 18, pp. 1041–66.

    CAS  Google Scholar 

  23. C.E. Jaske: Fat. Eng. Mater. Struct., 1983, vol. 6, p. 159.

    Article  Google Scholar 

  24. C. Laird: Fatigue Crack Propagation, ASTM STP 415, ASTM, Philadelphia, PA, 1967, pp. 131–80.

    Google Scholar 

  25. A. Saxena and S.D. Antolovich: Metall. Trans. A, 1975, vol. 6A, pp. 1809–28.

    CAS  Google Scholar 

  26. I.R. Rice: Fatigue Crack Propagation, ASTM STP 415, ASTM, Philadelphia, PA, 1967, pp. 247–311.

    Google Scholar 

  27. J. Morrow: ASTM STP 467, ASTM, Philadelphia, PA, 1970, p. 45.

  28. A. Saxena: Fat. Eng. Mater. Struct., 1981, vol. 3, p. 247.

    Article  Google Scholar 

  29. B.O. Kong, S.C. Lee, and S.W. Nam: J. Kor. Inst. Met. Mater., 1991, vol. 29, pp. 514–21.

    CAS  Google Scholar 

  30. J. Wareing and H.G. Vaughan: Met. Sci., 1977, Oct., pp. 439–46.

  31. H. Teranish and A.J. Mcevily: Metall. Trans. A, 1979, vol. 10A, pp. 1806–08.

    Google Scholar 

  32. D.C. Lord and L.F. Coffin, Jr.: Metall. Trans., 1973, vol. 4, pp. 1647–51.

    CAS  Google Scholar 

  33. H. Riedel and J.R. Rice: Fracture Mechanics, ASTM STP 700, Philadelphia, PA, 1980, pp. 112–30.

  34. P.S. Maiya and S. Majumdar: Metall. Trans. A, 1977, vol. 8A, pp. 1651–60.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, Y.J., Hong, J.H. & Nam, S.W. A model for creep-fatigue interaction in terms of crack-tip stress relaxation. Metall Mater Trans A 31, 1761–1775 (2000). https://doi.org/10.1007/s11661-998-0327-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0327-3

Keywords

Navigation