Skip to main content
Log in

A model for life prediction in low-cycle fatigue with hold time

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In high-temperature and low-cycle fatigue, creep damage reduces fatigue life. In this investigation, a model for life prediction in low-cycle fatigue with hold time at tensile peak strain is suggested in the temperature region of 0.57T m. This model is based on previously reported theories for creep cavitatation and we predict the creep-fatigue life. It is proposed that the fatigue life may be predicted in terms of plastic strain range, test temperature, hold time and other parameters. An equation for life prediction is given and checked using other investigators' experimental results with various hold times. The predicted creep-fatigue lives are in good agreement with those observed experimentally for 304 stainless steel, 316 stainless steel, CrMoV steel and 13CrMo44 steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. F. Coffin, Jr,Trans. ASME 76 (1954) 931.

    Google Scholar 

  2. S. S. Manson, NASA Technical Note 2933 (NASA Lewis Research Centre, Cleveland, Ohio, 1954).

    Google Scholar 

  3. K. -T. Rie andH. P. Stüwe,Z. Metallknde 64 (1973) 37.

    Google Scholar 

  4. E. Krempl andB. M. Wundt, Hold Time Effects in High-Temperature Low-Cycle Fatigue, A Literature Survey and Interpretive Report (American Society for Testing and Materials, Philadelphia, Report, ASTM STP 489, 1971) p. 1.

    Google Scholar 

  5. J. B. Conway, R. H. Stentz andJ. T. Berling, Fatigue, Tensile, and Relaxation Behavior of Stainless Steels (USAEC Technical Information Center, Oak Ridge, Tennessee, 1975) Chap. 5, p. 112.

    Google Scholar 

  6. C. E. Jaska, H. Mindlin andJ. S. Perrin, Fatigue at Elevated Temperatures, ASTM STP 520 (American Society for Testing and Materials, Philadelphia, 1973) p. 365.

    Google Scholar 

  7. R. M. Curran andB. M. Wundt, Symposium on Creep-Fatigue Interaction (ASME-MPC, 1076) p. 203.

  8. D. Sidey, Fracture 1977, 4th International Conference on Fracture, Waterloo, Canada (Pergamon Press, 1977) Vol. 2, p. 813.

  9. P. Shahinian andK. Sadananda, Symposium on Creep-Fatigue Interaction (ASME-MPC, 1976) p. 365.

  10. L. F. Coffin Jr, Fracture 1969, 2nd International Conference on Fracture, Brighton, April (Pergamon Press, 1969) p. 643.

  11. Idem, Symposium on Creep-Fatigue Interaction (ASME-MPC, 1976) p. 349.

  12. S. S. Manson, Fatigue at Elevated Temperatures, ASTM STP 520 (American Society for Testing and Materials, 1973) p. 744.

  13. Idem, Third International Conference on Mechanical Behaviour of Materials, Cambridge, England (Pergamon Press, 1979) Vol. 1, p. 13.

  14. W. J. Ostergren,J. Test. Eval. 4 (1976) 327.

    Google Scholar 

  15. Idem, Symposium on Creep-Fatigue Interaction (ASME-MPC, 1976) p. 179.

  16. B. Tomkins andJ. Wareing,Met. Sci. 11 (1977) 414.

    Google Scholar 

  17. S. Majumdar andP. S. Maiya, Third InterMaterials, Cambridge, England (Pergamon Press, 1979) Vol. 2, p. 101.

  18. Idem, Can. Metall. Q. 18 (1979) 57.

    Google Scholar 

  19. Idem, Trans. ASME, J. Eng. Mater. Tech. 102 (1980) 159.

    Google Scholar 

  20. R. A. Bartlett, “Fracture 1977”, 4th International Conference on Fracture, Waterloo, Canada (Pergamon Press, 1979) Vol. 2, p. 831.

  21. S. Baik, PhD thesis, Mechanisms of Creep-Fatigue Interaction, Cornell University, 1982.

  22. H. G. Edmunds andD. J. White,J. Mech. Eng. Sci. 8 (1966) 310.

    Google Scholar 

  23. R. W. Balluffi andL. L. Seigle,Acta Metall. 3 (1955) 170.

    Google Scholar 

  24. E. S. Machlin,Trans. Met. Soc. AIME 206 (1956) 106.

    Google Scholar 

  25. R. Raj,Acta Metall. 26 (1972) 887.

    Google Scholar 

  26. R. P. Skelton,Phil Mag. 14 (1966) 563.

    Google Scholar 

  27. S. Baik andR. Raj,Met. Trans. 13A (1982) 1215.

    Google Scholar 

  28. K. U. Snowden,Scripta Metall. 7 (1973) 1097.

    Google Scholar 

  29. E. Smith andJ. T. Barnby,Met. Sci. J. 1 (1967) 1.

    Google Scholar 

  30. R. G. Fleck, D. M. R. Taplin andC. J. Beevers,Acta Metall. 23 (1975) 415.

    Google Scholar 

  31. A. Avielt andA. K. Mukherjee, Advances in Fracture Research, 5th International Conference on Fracture, Cannes, France (Pergamon Press, 1981) Vol. 4, p. 1657.

  32. D. Lonsdale andP. E. J. Flewitt,Mater. Sci. Eng. 39 (1979) 217.

    Google Scholar 

  33. P. O. Kuttunen, T. Lepistö, G. Kostorz andG. Göltz,Acta Metall. 29 (1981) 969.

    Google Scholar 

  34. R. W. Ballufi andL. L. Siegle,ibid. 3 (1955) 170.

    Google Scholar 

  35. D. Hull andD. E. Rimmer,Phil Mag. 4 (1959) 673.

    Google Scholar 

  36. J. E. Harris,Trans. Met. Soc. AIME 233 (1965) 1509.

    Google Scholar 

  37. M. V. Speight andW. Beere,Met. Sci. 9 (1959) 673.

    Google Scholar 

  38. A. M. Ermi andJ. Moteff,Met. Trans. 13A (1982) 1577.

    Google Scholar 

  39. P. S. Maiya andS. Majumdar,ibid. 8A (1977) 1651.

    Google Scholar 

  40. R. A. T. Dawson, W. J. Elder, G. T. Hill andA. T. Price, International Conference on Thermal and High Strain Fatigue, London, England (Pergamon Press, 1967) p. 40.

  41. A. Coles, G. T. Hill, R. A. T. Dawson andS. J. Watson,ibid. p. 270.

  42. E. Lachmann, PhD thesis, Zur Plastoermüdung von Grendwerkstoffen und Schweissverbindungen bei Erhöhter Temperatur, Braunschweig University, 1982.

  43. R. A. Perkins, R. A. Padgett andN. K. Tunali,Met. Trans. 4A (1973) 2535.

    Google Scholar 

  44. T. K. Lai andA. Wickens,Acta Metall. 27 (1979) 217.

    Google Scholar 

  45. R. A. Stevens andP. E. J. Flewitt Met Trans. 14A (1983) 679.

    Google Scholar 

  46. D. A. Miller, F. A. Mohamed andT. G. Langdon Mater. Sci. Eng. 40 (1979) 159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, J.W., Nam, S.W. & Rie, KT. A model for life prediction in low-cycle fatigue with hold time. J Mater Sci 20, 3763–3770 (1985). https://doi.org/10.1007/BF01113785

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113785

Keywords

Navigation