Skip to main content
Log in

Strengthening effects in AC8A/Al2O3 short-fiber composites as a function of temperature and strain rate

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The strengthening aspect of AC8A/Al2O3 short-fiber composites is examined under the framework of a modified shear lag model over the range of 298 to 723 K and 10−3 to 103 s−1. The strength sustained by the composite at high temperatures is much higher than for the alloy. As the strain rate rises, the portion of strength that the composite or alloy can sustain is drastically increased. Also, the composite shows a lower strain rate sensitivity, likely to be caused by the higher tendency of fiber damage and local stress concentration. As the temperature is higher, the strain rate sensitivity becomes considerably higher. The composite strength can be theoretically calculated using the Friend and Modified Tsai-Hill formulas. By closer examination, the experimental data agree better with the prediction of the Modified Tsai-Hill 2D (min) or 2D (max) model. Nevertheless, all of the predictions give quite reasonable strength values as well as the trend as a function of temperature and strain rate. Overall, test temperature governs the strengthening efficiency. High temperatures give the best efficiency. Influence from strain rate exists, but is less significant. It is observed that the strengthening effect is more pronounced when the matrix strength is lower, such as at higher temperatures and lower strain rates. Calculations from the critical fiber volume fraction V crit and load transfer coefficient α both show an increasing trend with increasing temperature and decreasing strain rate, also suggesting that the strengthening effect by adding short fibers into the matrix is more apparent and efficient at high temperatures and low strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Taya and R.J. Aresenault: Metal Matrix Composites, Thermomechanical Behavior, Pergamon Press, Oxford, United Kingdom, 1989, pp. 209–21.

    Google Scholar 

  2. L.M. Gonzalez, F.L. Cumbrera, F. Sanchez-bajo, and A. Pajares: Acta Metall. Mater., 1994, vol. 42, pp. 689–94.

    Article  Google Scholar 

  3. Y.H. Kim, S.H. Lee, and N.J. Kim: Metall. Trans. A, 1992, vol. 23A, pp. 2589–96.

    CAS  Google Scholar 

  4. T. Donomoto, K. Funatani, N. Miura, and N. Miyake: SAE Paper No. 830252, SAE, Warrendale, PA, 1983.

  5. C.S. Liauo, H. Chang, J.C. Huang, and P.-W. Kao: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 143–58.

    CAS  Google Scholar 

  6. C.M. Friend: J. Mater. Sci., 1987, vol. 22, pp. 3005–10.

    Article  CAS  Google Scholar 

  7. W.J. Baxter: Metall. Trans. A, 1992, vol. 23A, pp. 3045–53.

    CAS  Google Scholar 

  8. A. Kelly and W.R. Tyson: J. Mech. Phys. Solid, 1965, vol. 13, pp. 329–50.

    Article  CAS  Google Scholar 

  9. V.D. Azzi and S.W. Tsai: Exp. Mech., 1965, vol. 5, pp. 283–88.

    Article  Google Scholar 

  10. R.M. Christensen and R.M. Waals: J. Compos. Mater., 1972, vol. 6, pp. 518–32.

    Google Scholar 

  11. K.M. Prewo and K.G. Kreider: Metall. Trans., 1972, vol. 3, pp. 2201–11.

    CAS  Google Scholar 

  12. V.C. Nardone and K.M. Prewo: Scripta Metall., 1986, vol. 20, pp. 43–48.

    Article  CAS  Google Scholar 

  13. J. Llorca: Acta Metall. Mater., 1995, vol. 43, pp. 181–92.

    CAS  Google Scholar 

  14. H. Sekine and R. Chent: Composites, 1995, vol. 26, pp. 183–88.

    Article  CAS  Google Scholar 

  15. R.J. Arsenault and N. Shi: Mater. Sci. Eng., 1986, vol. 81, pp. 175–87.

    Article  CAS  Google Scholar 

  16. T.W. Clyne and J.F. Mason: Metall. Trans. A, 1987, vol. 18A, pp. 1519–30.

    CAS  Google Scholar 

  17. B.Y. Lou and J.C. Huang: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3095–3107.

    CAS  Google Scholar 

  18. Y. Song and T.N. Baker: Mater. Sci. Technol., 1994, vol. 10, pp. 406–13.

    CAS  Google Scholar 

  19. M. Taya and T. Mori: Acta Metall., 1987, vol. 35, pp. 155–62.

    Article  CAS  Google Scholar 

  20. M. Manoharan and J.J. Lewandowski: Acta Metall. Mater., 1990, vol. 38, pp. 489–96.

    Article  CAS  Google Scholar 

  21. M. Vedani and E. Gariboldi: Acta Mater., 1996, vol. 44, pp. 3077–88.

    Article  CAS  Google Scholar 

  22. T.J.A. Doel and P. Browen: Composites, 1996, vol. 27A, pp. 655–65.

    CAS  Google Scholar 

  23. A. Luo: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2445–56.

    CAS  Google Scholar 

  24. Z. Wang and R.J. Zhang: Metall. Trans. A, 1991, vol. 22A, pp. 1585–93.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liauo, C.S., Huang, J.C. Strengthening effects in AC8A/Al2O3 short-fiber composites as a function of temperature and strain rate. Metall Mater Trans A 28, 1859–1869 (1997). https://doi.org/10.1007/s11661-997-0116-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0116-4

Keywords

Navigation