Skip to main content
Log in

Mechanisms of ambient temperature fatigue crack growth in Ti-46.5Al-3Nb-2Cr-0.2W

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fatigue crack growth studies have been conducted on a two-phase alloy with a nominal composition of Ti-46.5Al-3Nb-2Cr-0.2W (at. pct), heat treated to produce duplex and lamellar microstructures. Fatigue crack growth tests were conducted at 23 °C using computer-controlled servohydraulic loading at a cyclic frequency of 20 Hz. Several test methods were used to obtain fatigue crack growth rate data, including decreasing-load-range-threshold, constant-load-range, and constant-K max increasing-load-ratio crack growth control. The lamellar microstructure showed substantial improvement in crack growth resistance and an increase in the threshold stress intensity factor range, ΔK th , when compared with the behavior of the duplex microstructure. The stress ratio had a significant influence on crack growth behavior in both microstructures, which appeared to be a result of roughness-induced crack closure mechanisms. Fractographic characterization of fatigue crack propagation modes indicated a highly tortuous crack path in the fully lamellar microstructure, compared to the duplex microstructure. In addition, limited shear ligament bridging and secondary cracking parallel to the lamellar interfaces were observed in the fully lamellar microstructure during fatigue crack propagation. These observations were incorporated into a model that analyzes the contribution of intrinsic vs extrinsic mechanisms, such as shear ligament bridging and roughness-induced crack closure, to the increased fatigue crack growth resistance observed for the fully lamellar microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Larsen and T. Nicholas: Eng. Fract. Mech., 1985, vol. 22, pp. 715–30.

    Google Scholar 

  2. Y.-W. Kim: JOM, 1994, vol. 46, pp. 30–40.

    CAS  Google Scholar 

  3. S.J. Balsone, J.M. Larsen, D.C. Maxwell, and J.W. Jones: Mater. Sci. Eng., 1995, vols. A192/A193, pp. 457–64.

    Google Scholar 

  4. Fatigue and Fracture of Ordered Intermetallic Materials I, S.J. Balsone, J.W. Jones, D.C. Maxwell, T.S. Srivatsin, W. Sobayejo, and D.L. Davidsons, eds., TMS, Warrendale, PA, 1994.

    Google Scholar 

  5. FATIGUE ’96, J.M. Larsen, B.D. Worth, S.J. Balsone, A.H. Rosenberger, J.W. Jones, G. Lutjering, and H. Nowacks, eds., Elsevier Science Ltd., Berlin, 1996, vol. III, pp. 1719–30.

    Google Scholar 

  6. Gamma Titanium Aluminides, J.M. Larsen, B.D. Worth, S.J. Balsone, J.W. Jones, R. Wagner, M. Yamaguchi, and Y.-W. Kims, eds., TMS/ASM INTERNATIONAL, Warrendale, PA, 1995, pp. 821–34.

    Google Scholar 

  7. J.M. Larsen, B.D. Worth, S.J. Balsone, and S.J. Rosenberger: 8th World Conf. on Titanium, The Institute of Materials, Birmingham, United Kingdom, 1995, in press.

    Google Scholar 

  8. K.T.V. Rao, Y.W. Kim, C.L. Muhlstein, and R.O. Ritchie: Mater. Sci. Eng., 1995, vols. A192/A193, pp. 474–82.

    Google Scholar 

  9. Titanium ’92: Science and Technology, A.W. James, P. Bowen, F.H. Froes, and I. Caplans, eds., TMS, Warrendale, PA, 1993, pp. 1139–46.

    Google Scholar 

  10. A.W. James, R.A. Chave, C.A. Hippsley, and P. Bowen: Proc. 3rd Eur. Conf. on Advanced Materials and Processes. Part I (of 3), J. Phys., 1993, vol. 3, pp. 411–21.

  11. P. Bowen, R.A. Chave, and A.W. James: Mater. Sci. Eng., 1995, vols. A192/A193, pp. 443–56.

    Google Scholar 

  12. W.O. Sobayejao, J.E. Deffeyes, and P.B. Aswath: Mater. Sci. Eng., 1991, vol. A138, pp. 95–101.

    Google Scholar 

  13. W.O. Soboyejo and C. Mercer: Scripta Metall. Mater., 1994, vol. 30, pp. 1515–20.

    Article  CAS  Google Scholar 

  14. D.L. Davidson, J.B. Campbell, and R.A. Page: Metall. Trans. A, 1991, vol. 22A, pp. 377–91.

    CAS  Google Scholar 

  15. D.L. Davidson: Materials Research Society Symposia Proceedings, Materials Research Society, Pittsburgh, PA, 1992, vol. 273, pp. 67–80.

    Google Scholar 

  16. D.L. Davidson and J.V. Campbell: Metall. Trans. A, 1993, vol. 24A, pp. 1555–74.

    CAS  Google Scholar 

  17. Proc. 1st Int. Symp. on Structural Intermetallics, K.S. Chan, D.L. Davidson, J.J. Lewandowski, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathals, eds., TMS, Warrendale, PA, 1993, pp. 223–30.

    Google Scholar 

  18. K.S. Chan: Metall. Trans. A, 1993, vol. 24A, pp. 569–83.

    CAS  Google Scholar 

  19. K.S. Chan and Y.-W. Kim: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1217–28.

    CAS  Google Scholar 

  20. K.S. Chan and Y.-W. Kim: Acta Metall. Mater., 1995, vol. 43, pp. 439–51.

    Article  CAS  Google Scholar 

  21. K.S. Chan: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1407–18.

    CAS  Google Scholar 

  22. K.T.V. Rao, G.R. Odette, and R.O. Ritchie: Acta Metall. Mater., 1992, vol. 40, pp. 353–61.

    Article  CAS  Google Scholar 

  23. K.T.V. Rao, G.R. Odette, and R.O. Ritchie: Acta Metall. Mater., 1994, vol. 42, pp. 893–911.

    Article  CAS  Google Scholar 

  24. Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM E 647-95, ASTM, Philadelphia, PA, 1995, pp. 578–614.

  25. J.M. Larsen, J.R. Jira, and S.R. Ravichandran: Measurement of Small Cracks by Photomicroscopy: Experiments and Analysis, J.M. Larsen and J.E. Allison, eds., ASTM, Philadelphia, PA, 1992, pp. 57–80.

    Google Scholar 

  26. S.J. Balsone, B.D. Worth, J.M. Larsen, and J.W. Jones: Scripta Metall. Mater., 1995, vol. 32, pp. 1653–58.

    Article  CAS  Google Scholar 

  27. A.W. James and P. Bowen: Processing Properties and Applications of Metallic and Ceramic Materials, Engineering Materials Advisory Services, Ltd., U.K., 1992, vol. 2, pp. 677–82.

    Google Scholar 

  28. R.O. Ritchie: Mater. Sci. Eng. A, 1988, vol. A103, pp. 15–28.

    Article  CAS  Google Scholar 

  29. Small Fatigue Cracks, R.O. Ritchie, W. Yu, and J. Lankfords, eds., TMS, Warrendale, PA, 1986, pp. 167–89.

    Google Scholar 

  30. L.P. Zawada and T. Nicholas: The Effect of Closure on the Near-Threshold Fatigue Crack Propagation Rates of a Nickel Base Superalloy, Newman, J.C., Jr. and W. Elber, eds., ASTM, Philadelphia, PA, 1988, pp. 548–67.

    Google Scholar 

  31. S. Banerjee: A Review of Crack Closure, AFWAL-TR-84-4031, AFWAL/MLLN, Wright-Patterson Air Force Base, OH, 1984.

  32. S. Suresh: Metall. Trans. A, 1983, vol. 14A, pp. 2375–85.

    Google Scholar 

  33. S. Suresh: Metall. Trans. A, 1985, vol. 16A, pp. 249–60.

    CAS  Google Scholar 

  34. Mechanics of Materials, F.P. Beer and E.R. Johnston, Jr., eds., McGraw-Hill, Inc., New York, NY, 1992.

    Google Scholar 

  35. R.O. Ritchie, Y. Weikang, and R.J. Bucci: Eng. Fract. Mech., 1989, vol. 32, pp. 361–77.

    Article  Google Scholar 

  36. Y.-W. Kim: Mater. Sci. Eng. A, 1995, vols. A192/A193, pp. 519–33.

    Google Scholar 

  37. J.C. Newman: Behavior of Short Cracks in Airframe Components, NATO AGARD, Toronto, 1982, vol. 328, pp. 6.1–6.26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worth, B.D., Larsen, J.M., Balsone, S.J. et al. Mechanisms of ambient temperature fatigue crack growth in Ti-46.5Al-3Nb-2Cr-0.2W. Metall Mater Trans A 28, 825–835 (1997). https://doi.org/10.1007/s11661-997-0069-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0069-7

Keywords

Navigation