Skip to main content
Log in

Microstructure and mechanisms of cyclic deformation of aluminum single crystals at 77 K

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Aluminum single crystals were cyclically deformed in single slip at small strain amplitudes at 77 K to presaturation. The observed mechanical behavior is consistent with recent work by other investigators. The dislocation substructure can be described as consisting of dense bundles or veins of edge dislocation dipoles, of a single Burgers vector, separated by lower dislocation density regions or channels where substantial debris is evident. This debris was determined as almost exclusively relatively short edge-dipole segments. Screw dislocations with the same Burgers vector span the channels. In situ cyclic reverse (shear) deformation experiments in the high-voltage transmission electron microscope (HVEM) were successfully performed using the X-Y technique where thin foils are stressed in alternating perpendicular directions. Our experiments indicate that loops frequently expand from the dipole bundles into the channel and the edge component is absorbed by nearby bundles, leaving screw segments behind. The screw dislocations that span the channel move easily and reverse direction with shear reversal. Screws may move first with a strain reversal. A comparable fraction of the strain during each cycle appears to be provided by screw and edge dislocations. Dipole “flipping” was not observed. There is no obvious evidence for internal backstresses that assist plastic deformation on reversal of the applied shear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.S. Basinski and S.J. Basinski: Prog. Mater. Sci., 1992, vol. 32, pp. 89–148.

    Article  Google Scholar 

  2. C. Laird: in Dislocations in Solids, F.R.N. Nabarro, ed., North-Holland, Amsterdam, 1983, vol. 6, pp. 1–120.

    Google Scholar 

  3. P. Neumann: in Physical Metallurgy, R.W. Cahn and P. Haasen, eds., Elsevier, New York, NY, 1983, pp. 1554–94.

    Google Scholar 

  4. H. Mughrabi: in Strength of Metals and Alloys, H.J. McQueen, J.-P. Baillon, J.I. Dickson, J.J. Jonas, and M.G. Akben, eds., Pergamon Press, Oxford, United Kingdom, 1986, pp. 1917–42.

    Google Scholar 

  5. J.C. Grosskruetz: Phys. Status Solidi, 1971, vol. 41, pp. 11–31.

    Google Scholar 

  6. J. Dhers and J. Driver: in Basic Mechanisms in the Fatigue of Metals, Elsevier, Amsterdam, P. Lukas and J. Polak, eds., 1988, pp. 33–40.

    Google Scholar 

  7. O. Vorren and N. Ryum: Acta. Metall., 1987, vol. 35, pp. 855–66.

    Article  CAS  Google Scholar 

  8. A. Giese and Y. Estrin: Scripta Metall. Mater., 1993, vol. 28, pp. 803–07.

    Article  CAS  Google Scholar 

  9. C.E. Feltner: Phil. Mag., 1965, vol. 12, pp. 1229–48.

    CAS  Google Scholar 

  10. D. Kuhlmann-Wilsdorf and C. Laird: Mater. Sci. Eng., 1979, vol. 37, pp. 111–20.

    Article  CAS  Google Scholar 

  11. D. Kuhlmann-Wilsdorf and C. Laird: Mater. Sci. Eng., 1977, vol. 27, pp. 137–56.

    Article  CAS  Google Scholar 

  12. A.W. Sleeswyk, M.R. James, D.H. Plantinga, and W.S.T. Maathuis: Acta Metall., 1978, vol. 26, pp. 1265–71.

    Article  CAS  Google Scholar 

  13. D.E. Orowan: Int. Conf. on Stresses and Fatigue in Metals, Elsevier, Amsterdam, 1959, pp. 59–80.

    Google Scholar 

  14. H. Mughrabi: Acta Metall., 1983, vol. 31, pp. 1367–79.

    Article  CAS  Google Scholar 

  15. H. Mughrabi: in Continuum Models of Discrete Systems 4, O. Brulin and R.K.T. Hsich, eds., North-Holland, Amsterdam, 1981, pp. 241–57.

    Google Scholar 

  16. W.D. Nix and B. Ilschner: in Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, United Kingdom, 1980, vol. 3, p. 1503.

    Google Scholar 

  17. H. Mori and H. Fujita: J. Phys. Soc. Jpn., 1975, vol. 38, pp. 1349–56.

    Article  CAS  Google Scholar 

  18. M.E. Kassner, A.A. Ziaai-Moayyed, and A.K. Miller: Metall. Trans. A, 1985, vol. 16A, pp. 1069–76.

    CAS  Google Scholar 

  19. A. Seeger, S. Marder, and H. Kronmuller: Electron Microscopy and Strength of Crystals, Interscience, New York, NY, 1963.

    Google Scholar 

  20. A. Yamamoto, C. Morita, T. Tono, S. Saimoto, H. Saka, and T. Imura: Proc. 5th Int. Conf. on High Voltage Electron Microscopy, T. Imura and H. Hashimoto, eds., Nakanishi Print Co., Kyoto, Japan, 1977, pp. 395–98.

    Google Scholar 

  21. Y. Yamamoto, C. Morita, T. Tono, M. Nonoyama, H. Saka, and T. Imura: Proc. 5th Int. Conf. on High Voltage Electron Microscopy, T. Imura and H. Hashimoto, eds., Nakanishi Print Co., Kyoto, Japan, 1977, pp. 133–36.

    Google Scholar 

  22. L.P. Kubin, E.J. Lepinoux, J. Rabin, P. Veyssiere, and A. Fourdeux: in Strength of Metals and Alloys, R.C. Gifkins, ed., Pergamon Press, Oxford, United Kingdom, 1982, pp. 953–68.

    Google Scholar 

  23. J. Lepinoux and L.P. Kubin: Phil. Mag., 1985, vol. 51, pp. 675–96.

    CAS  Google Scholar 

  24. T. Tabata, H. Fujita, M. Hiraoka, and K. Onishi: Phil. Mag., 1983, vol. 47A, pp. 841–57.

    Google Scholar 

  25. Z. Jeping, G. Haicheng, Z. Juiju, and C. Laird: Scripta Metall., 1989, vol. 23, pp. 553–56.

    Article  Google Scholar 

  26. K.S. Vecchio, J.A. Hunt, and D.B. Williams: J. Electron Microsc. Technique, 1991, vol. 17, pp. 351–55.

    Article  CAS  Google Scholar 

  27. M.A. Wall and M.E. Kassner: Proc. Microscopy and Microanalysis, G.W. Bailey, J.M. Korbett, R.V.W. Dimlich, J.R. Michael, and N.J. Zaluzic, eds., San Francisco Press, San Francisco, CA, 1996.

    Google Scholar 

  28. M.E. Kassner, M.A. Wall, and A.W. Sleeswyk: Scripta Metall. Mater., 1991, vol. 25, pp. 1701–06.

    Article  CAS  Google Scholar 

  29. M.A. Wall and M.E. Kassner: Proc. Microscopy and Microanalysis, G.W. Bailey, M.H. Ellisman, R.A. Henniger, and N.J. Zalluzec, eds., Jones and Begsell Publ., New York, NY, 1995, pp. 248–49.

    Google Scholar 

  30. M.E. Kassner: Metall. Trans. A, 1989, vol. 20A, pp. 2182–85.

    CAS  Google Scholar 

  31. Z.S. Basinski and S.J. Basinski: Acta Metall., 1989, vol. 37, pp. 3255–62.

    Article  CAS  Google Scholar 

  32. F. Haessner and J. Schmidt: Acta Metall. Mater., 1993, vol. 41, pp. 1739–49.

    Article  CAS  Google Scholar 

  33. M.E. Kassner and C.J. Echer: Metallography, 1986, vol. 29, pp. 127–32.

    Article  Google Scholar 

  34. P.J. Woods: Phil. Mag., 1973, vol. 14, pp. 155–91.

    Google Scholar 

  35. J.G. Antonopoulos and A.T. Winter: Phil. Mag., 1976, vol. 33, pp. 87–95.

    CAS  Google Scholar 

  36. J. Piqueras, J.C. Grosskreutz, and W. Frank: Phys. Status Solidi, 1972, vol. 11a, pp. 567–80.

    Google Scholar 

  37. S.J. Basinski, Z.S. Basinski, and A. Howie: Phil. Mag., 1969, vol. 19, pp. 899–924.

    CAS  Google Scholar 

  38. W.J. Yang, R.A. Dodd, and G.L. Kulcinski: J. Nucl. Mater., 1977, vol. 64, pp. 157–66.

    Article  CAS  Google Scholar 

  39. D. Hull: Introduction to Dislocations, 2nd ed., Pergamon Press, Oxford, United Kingdom, 1975, p. 158.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassner, M.E., Wall, M.A. & Delos-Reyes, M.A. Microstructure and mechanisms of cyclic deformation of aluminum single crystals at 77 K. Metall Mater Trans A 28, 595–609 (1997). https://doi.org/10.1007/s11661-997-0045-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0045-2

Keywords

Navigation