Skip to main content
Log in

Spheroidization of Sulfide in Sulfur Bearing Steels by Oxygen: An Experimental and First-Principle Investigation

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The morphology of single-particle manganese sulfide (MnS) in sulfur bearing steel without oxygen is polyhedral, while it is spherical in the steel containing 70 ppm oxygen. Oxygen can dissolve in MnS to form oxysulfide (Mn(S,O)), the dissolution form of oxygen in MnS is both the substitutional and interstitial solution. The difference in the surface energies of Mn(S,O) is significantly smaller than that of MnS, this is the root cause for oxygen to spheroidize sulfides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. N. Dogan, R.J. Longbottom, M.H. Reid, M.W. Chapman, P. Wilson, L. Moore, and B.J. Monaghan: Ironmak. Steelmak., 2015, vol. 42, pp. 185–93.

    Article  CAS  Google Scholar 

  2. J. Gamutan, T. Miki, and T. Nagasaka: ISIJ Int., 2020, vol. 60, pp. 1610–16.

    Article  CAS  Google Scholar 

  3. P. Song, Y. Li, Q. Ren, Y. Ren, and L. Zhang: Metall. Mater. Trans. B, 2023, vol. 54B(3), pp. 1468–82.

    Article  Google Scholar 

  4. Y. Kim, D. Woo, H. Gaye, H. Lee, and Y. Kang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 535–45.

    Article  Google Scholar 

  5. G. Wang, S. Li, X. Ai, C. Zhang, and C. Lai: J. Iron Steel Res. Int., 2015, vol. 22, pp. 566–72.

    Article  Google Scholar 

  6. K. Miao, M. Nabeel, and N. Dogan: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 2897–2913.

    Article  Google Scholar 

  7. H. Liu and W. Chen: Steel Res. Int., 2012, vol. 83, pp. 1172–79.

    Article  CAS  Google Scholar 

  8. Q. Tian, B. Liu, W. Shen, T. Hu, J. Fu, and X. Xu: Steel Res. Int., 2023, vol. 94, pp. 1–11.

    Google Scholar 

  9. G.J.W. Kor and E.T. Turkdogan: Metall. Trans., 1972, vol. 3, pp. 1269–78.

    Article  CAS  Google Scholar 

  10. L. Luyckx, J.R. Bell, A. Mclean, and M. Korchynsky: Metall. Trans., 1970, vol. 1, pp. 3341–50.

    Article  CAS  Google Scholar 

  11. C.E. Sims: Trans. Am. Inst. Min. Metall. Eng., 1959, vol. 215, pp. 367–93.

    CAS  Google Scholar 

  12. T.J. Baker, K.B. Gove, and J.A. Charles: Metals Tech., 1976, vol. 3, pp. 183–93.

    Article  Google Scholar 

  13. T.J. Baker and A. Charles: J. Iron Steel Inst., 1972, vol. 210, pp. 680–90.

    CAS  Google Scholar 

  14. T.J. Baker and A. Charles: J. Iron Steel Inst., 1973, vol. 211, pp. 187–92.

    CAS  Google Scholar 

  15. V.J. Eeghem and A. Desy: Mod. Casting, 1964, vol. 4, pp. 142–48.

    Google Scholar 

  16. P. Mohla and J. Beech: Br. Foundryman, 1968, vol. 31, pp. 453–60.

    Google Scholar 

  17. S. Lin, H. Yang, Y. Su, K. Chang, C. Yang, and S. Lin: J. Alloy. Compd., 2019, vol. 779, pp. 844–55.

    Article  CAS  Google Scholar 

  18. Q. Tian, N. Liu, W. Shen, X. Xu, and J. Fu: Steel Res. Int., 2023, vol. 94(9), p. 2300074.

    Article  CAS  Google Scholar 

  19. Z.K. Heiba, M.B. Mohamed, A. Badawi, and N.M. Farag: Chem. Phys. Lett., 2021, vol. 779, pp. 1–10.

    Article  Google Scholar 

  20. Y.X. He, L. Tao, M.J. Wu, P. Poldorn, D. Dastan, S. Abbasi, S. Nie, X.T. Yin, and Q. Wang: Mater. Today Nano, 2023, vol. 22, pp. 1–10.

    Google Scholar 

  21. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, and M.C. Payne: Z. Kristallogr. Cryst. Mater., 2005, vol. 220, pp. 567–70.

    Article  CAS  Google Scholar 

  22. L. Tao, D. Dastan, W.S. Wang, P. Poldorn, X.Z. Meng, M.J. Wu, H.W. Zhao, H. Zhang, L.X. Li, and B.G. An: ACS Appl. Mater. Interfaces, 2023, vol. 15, pp. 12534–44.

    Article  CAS  PubMed  Google Scholar 

  23. O. Kavcı and S. Cabuk: Comp. Mater. Sci., 2014, vol. 95, pp. 99–105.

    Article  Google Scholar 

  24. J.S. Sweeney and D.L. Heinz: Phys. Chem. Miner., 1993, vol. 20, pp. 63–68.

    Article  CAS  Google Scholar 

  25. H. Xue, Y. Liang, S. Shang, Z. Liu, and J. Lin: J. Alloy. Compd., 2022, vol. 917, pp. 1–3.

    Article  Google Scholar 

  26. W.Q. Ren, L. Wang, Z.L. Xue, C.Z. Li, H.Y. Zhu, A. Huang, and C. Li: High Temp. Mat. Pr-Isr., 2021, vol. 40, pp. 178–92.

    Article  CAS  Google Scholar 

  27. Y. Lu and T. Miki: ISIJ Int., 2021, vol. 61, pp. 2360–69.

    Article  CAS  Google Scholar 

  28. M. Okajima and T. Tohda: J. Cryst. Growth, 1992, vol. 117, pp. 810–15.

    Article  CAS  Google Scholar 

  29. O. Goede, W. Heimbrodt, V. Weinhold, E. Schnurer, and H.G. Eberle: Phys. Stat. Sol., 1987, vol. 143, pp. 511–18.

    Article  CAS  Google Scholar 

  30. Y.V. Murty, T.Z. Kattamis, R. Mehrabian, and M.C. Flemings: Metall. Trans. A, 1977, vol. 8A, pp. 1275–82.

    Article  CAS  Google Scholar 

  31. E.T. Turkdogan, G.J.W. Kor, L.S. Darken, and R.W. Gurry: Metall. Trans., 1971, vol. 2, pp. 1561–70.

    Article  CAS  Google Scholar 

  32. H. Gabrisch, L. Kjeldgaard, E. Johnson, and U. Dahmen: Acta Mater., 2001, vol. 49, pp. 4259–69.

    Article  CAS  Google Scholar 

  33. P. Hartman: in: P. Hartman (Ed.), Crystal Growth: An Introduction, North-Holland, Amsterdam, 1973, 367 (Chapter 14).

  34. P. Hartman: in: I. Sunagawa (Ed.), Morphology of Crystals, Terra Scientific, Tokyo/Reidel, Dordrecht, 1988, 269 (Chapter 4).

  35. Y.B. Xue, Y.T. Zhou, D. Chen, and X.L. Ma: J. Alloy. Compd., 2014, vol. 582, pp. 181–85.

    Article  CAS  Google Scholar 

  36. W. Lv, W. Jin, L. Yan, X. Pang, H. Yang, and K. Gao: Appl. Surf. Sci., 2019, vol. 471, pp. 425–34.

    Article  CAS  Google Scholar 

  37. H. Quan, B. Cheng, D. Chen, X. Su, Y. Xiao, and S. Lei: Electrochim. Acta, 2016, vol. 210, pp. 557–66.

    Article  CAS  Google Scholar 

  38. W. Lv, L. Yan, X. Pang, H. Yang, L. Qiao, Y. Su, and K. Gao: Appl. Surf. Sci., 2020, vol. 501, pp. 1–9.

    Article  Google Scholar 

Download references

The authors gratefully express their appreciation to National Natural Science Foundation of China (Grant No. 52074179) for supporting this work. One of the authors, Xiangyu Xu, gratefully acknowledges support from the National Natural Science Foundation of China (Youth Program No. 52104335) and Shanghai “Super Postdoctoral” Incentive Plan (Grant No. 2020194).

On behalf of all authors, the corresponding author state that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxun Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Q., Song, G., Liu, S. et al. Spheroidization of Sulfide in Sulfur Bearing Steels by Oxygen: An Experimental and First-Principle Investigation. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07406-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07406-8

Navigation