Skip to main content
Log in

Thermal Stability of Nanocrystalline Ag–Cu–Al Alloy Films with Densely Dispersed Alumina Particles Prepared via Reactive Sputtering Using Ar–O2 Mixed Gas

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To address the challenges associated with the fabrication of highly O2-permeable Ag membranes suitable for on-site and downsized O2 separators for large-scale industrial applications, we investigated nanocrystalline heat-resistant Ag–Cu–Al alloy thin films. Ag–1 at. pct. Al and Ag–2 at. pct. Cu–1 at. pct. Al alloy thin films with nanocrystalline structures were prepared through a reactive sputtering method employing Ar–O2 mixed gas under the condition of supplying excess O/Al flux ratio above the stoichiometric ratio of Al2O3 (> 3/2). To examine the thermal stability of the nanocrystalline Ag alloy films, heating tests were conducted at 350 °C for 1 hour and 300 °C for 1 to 1000 hours in air, and the Ag crystal grain size, nanoindentation hardness, Young’s modulus, and electrical resistivity were measured. The results show that the Ag–2 at. pct. Cu–1 at. pct. Al thin film has excellent thermal stability, maintaining its nanostructure with an average grain size of 30 nm after heating at 300 °C for 1000 hours in air. The effects of the addition of 2 at. pct. Cu and the O2 partial pressures during sputtering on the thermal stability of the Ag nanocrystalline structures were discussed using model calculations. It was found that supplying excess O/Al flux ratio above the stoichiometric ratio of Al2O3 (> 3/2) during sputtering reduced the dissolved Al concentration at the Ag grain boundary to substantially zero, almost completely suppressed the Ostwald ripening of nano-sized Al2O3 particles during sputtering and long-term heating, and allowed the Al2O3 particles to maintain high pinning force. Even under the excess oxygen supply conditions of O/Al > 3/2, the 2 at. pct. Cu addition was preferred for further Ag grain refinement in terms of promoting Al2O3 nucleation at the early stage of the film deposition on the substrate due to the effect of suppressing recrystallization of the Ag matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

E :

Young’s modulus (Pa)

H IT :

Nanoindentation hardness (Pa)

H V :

Vickers hardness (kgf/mm2)

J i :

Flux of element i (mol/m2/s)

P :

Sputtering power (W)

\( {P_{{{\text{O}}_{2} }} } \) :

Partial pressure of O2 (Pa)

R e :

Grain boundary reflection coefficient of free electron (–)

SR :

Sputtering deposition rate (m/s)

T :

Temperature (K)

X i :

Mole fraction of element i dissolved in the Ag film (–)

X i (av.):

Average mole fraction of element i dissolved in the Ag grain boundary (–)

X i (eq.):

Equilibrium mole fraction of element i dissolved in the Ag film (–)

b :

Burgers vector (m)

d :

Film thickness (m)

d g :

Grain size of the Ag crystal (m)

d g (hypo):

Hypothetical grain size of the Ag crystal over the entire Ag film (m)

d p :

Particle size of Al2O3 (m)

f gb :

Area fraction of the Ag grain boundary in the cross-section parallel to the Ag film surface (–)

f p :

Area fraction of the Al2O3 particle (–)

s p :

Spacing of Al2O3 particles at the Ag grain boundary (m)

\({s}_{p}^{0}\) :

Initial spacing of Al2O3 particles nucleated at the Ag grain boundary (m)

s p (hypo):

Hypothetical spacing of Al2O3 particles over the entire Ag film (m)

t :

Elapsed time for sputtering or heating time (s)

δ :

Grain boundary width of Ag (m)

λ e :

Mean free path of the free electron (m)

ρ :

Electrical resistivity of the Ag film (Ω·m)

ρ d :

Dislocation density (1/m2)

ρ matrix :

Electrical resistivity of the Ag matrix (Ω·m)

ρ 0 :

Electrical resistivity of Ag annealed bulk (Ω·m)

ρ p :

Electrical resistivity of Al2O3 (Ω·m)

σ :

Tensile strength (Pa)

\({\varphi }_{{\text{p}}}\) :

Volume fraction of the Al2O3 particles in the Ag film (–)

References

  1. National Energy Technology Laboratory, U. S. Department of Energy: Commercial Technologies for Oxygen Production, https://www.netl.doe.gov/research/Coal/energy-systems/gasification/gasifipedia/commercial-oxygen. Accessed 1 Sept 2023

  2. P. Rao and M. Muller: Industrial Oxygen: Its generation and Use, American Council for an Energy-Efficient Economy, 2007, https://www.aceee.org/files/proceedings/2007/data/papers/78_6_080.pdf. Accessed 1 Sept 2023

  3. R. Kiebach, S. Pirou, L.M. Aguilera, A.B. Haugen, A. Kaiser, P.V. Hendriksen, M. Balaguer, J. García-Fayos, J.M. Serra, F. Schulze-Küppers, M. Christie, L. Fischer, W.A. Meulenberg, and S. Baumann: J. Mater. Chem. A, 2022, vol. 10, pp. 2152–95.

    Article  CAS  Google Scholar 

  4. M. Jha and N. Gaur: J. Fam. Med. Prim. Care., 2022, vol. 11, pp. 1231–36.

    Article  Google Scholar 

  5. H. Aljaghoub, S. Alasad, A. Alashkar, M. AlMallahi, R. Hasan, K. Obaideen, and A.H. Alami: Int. J. Thermofluid, 2023, vol. 17, 100261.

    Article  CAS  Google Scholar 

  6. H. Murakami, M. Fujioka, M. Hase, T. Saito and J. Hayashi: Development of oxygen COG combustion system for steel reheating, the American Flame Research Committee, 1996, https://collections.lib.utah.edu/ark:/87278/s6w37zxz. Accessed 1 Sept 2023

  7. Y. Ueshima, M. Hasegawa, N. Kubota, Y. Matamura, E. Matsubara, K. Seki, and T. Hirato: Materialia, 2023, vol. 30, 101853.

    Article  CAS  Google Scholar 

  8. S. Hori, H. Tai, and S. Kawaguchi: J. Soc. Mat. Sci. Jpn., 1981, vol. 30, pp. 556–61.

    Article  CAS  Google Scholar 

  9. H. Yavas: Mechanical behavior of nanotwinned materials – experimental and computational approaches, PhD. Thesis, Iowa State University, 2016, pp. 50–60. https://doi.org/10.31274/etd-180810-5670. Accessed 1 Sept 2023

  10. ASTM International: ASTM E112-13, Standard Test Methods for Determining Average Grain Size (2021), https://standards.globalspec.com/. Accessed 1 Sept 2023

  11. W. S. Rasband, ImageJ (U. S. National Institutes of Health, 1997-2012), https://imagej.nih.gov/ij/. Accessed 1 Sept 2023

  12. International Organization for Standardization: ISO 14577-1:2015, Metallic materials — Instrumented indentation test for hardness and materials parameters—Part 1: Test method. https://www.iso.org/standard/56626.html. Accessed 1 Sept 2023

  13. ASTM International: ASTM F374-02, Standard Test Method for Sheet Resistance of Silicon Epitaxial, Diffused, Polysilicon, and Ion-implanted Layers Using an In-Line Four-Point Probe with the Single-Configuration Procedure (2017), https://www.astm.org/f0374-02.html. Accessed 1 Sept 2023

  14. B.K. Kad and P.M. Hazzledine: Mater. Sci. Eng. A, 1997, vol. 238, pp. 70–7.

    Article  Google Scholar 

  15. D. Tabor: The Hardness of Metals, Oxford University Press, Oxford, 1951, pp. 155–71.

    Google Scholar 

  16. T. Sawa: in Proc. of IMEKO2010 TC3,TC5 and TC22 Conferences in Metrology in Modern Context, 2010, pp. 171–74, https://www.imeko.org/publications/tc5-2010/IMEKO-TC5-2010-009.pdf. Accessed 1 Sept 2023

  17. J.W. Aldrich and R.W. Armstrong: Metall. Trans., 1970, vol. 1, pp. 2547–50.

    Article  CAS  Google Scholar 

  18. M. F. Ashby: Physics of Strength and Plasticity, ed. By A. S. Argon, MIT Press, Cambridge, MA, 1969, pp. 113–31.

  19. Smithells Metals Reference Book 7th ed., Ed. By E.A.Brandes and G.B.Brook, Butterworth-Heinemann, Oxford, Oxon, 1994, p. 15-3.

  20. Smithells Metals Reference Book 7th ed., Ed. By E.A.Brandes and G.B.Brook, Butterworth-Heinemann, Oxford, Oxon, 1994, p. 4–24.

  21. J.E. Bailey and P.B. Hirsch: Philos. Mag., 1960, vol. 5, pp. 485–97.

    Article  CAS  Google Scholar 

  22. H. Zhang, J. Geng, R.T. Ott, M.F. Besser, and M.J. Kramer: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 4078–85.

    Article  Google Scholar 

  23. S. Jalili, F. Hajakbari, and A. Hojabri: J. Theor. Appl. Phys., 2018, vol. 12, pp. 15–22.

    Article  Google Scholar 

  24. D.S. McLachlan, M. Blaszkiewicz, and R.E. Newnham: J. Am. Ceram. Soc., 1990, vol. 73, pp. 2187–03.

    Article  CAS  Google Scholar 

  25. A.F. Mayadas and M. Shatzkes: Phys. Rev. B, 1970, vol. 1, pp. 1382–9.

    Article  Google Scholar 

  26. J.W.C. De Vries: Thin Solid Films, 1988, vol. 167, pp. 25–32.

    Article  Google Scholar 

  27. E.I. Tochitskii and N.M. Belyavskii: Phys. Stat. Sol. (A), 1980, vol. 61, pp. K21-4.

    Article  CAS  Google Scholar 

  28. N. Artunç, M.D. Bilge, and G. Utlu: Surf. Coat. Technol., 2007, vol. 201, pp. 8377–1.

    Article  Google Scholar 

  29. K. Barmak, A. Darbal, K.J. Ganesh, P.J. Ferreira, J.M. Rickman, T. Sun, B. Yao, A.P. Warren, and K.R. Coffey: J. Vac. Sci. Technol., 2014, vol. 32, p. 061503.

    Article  Google Scholar 

  30. G.S. Jang, D.Y. Kim, and N.-M. Hwang: Electron. Mater. Lett., 2021, vol. 17, pp. 172–80.

    Article  CAS  Google Scholar 

  31. L.A. Zepeda-Ruiz, G.H. Gilmer, C.C. Walton, A.V. Hamza, and E. Chason: J. Cryst. Growth, 2010, vol. 312, pp. 1183–7.

    Article  CAS  Google Scholar 

  32. K. Mizukoshi, T. Yamamura, Y. Tomioka, and M. Kawamura: Jpn. J. Appl. Phys., 2022, vol. 61, 095503.

    Article  CAS  Google Scholar 

  33. N. Sano, S. Honma, and Y. Matsushita: Met. Trans., 1970, vol. 1, pp. 301-.

    Article  CAS  Google Scholar 

  34. R.A. Outlaw, S.N. Sankaran, G.B. Hoflund, and M.R. Davidson: J. Mater. Res., 1988, vol. 3, pp. 1378–84.

    Article  CAS  Google Scholar 

  35. P. Franke and D. Neuschütz: Scientific Group Thermodata Europe (SGTE). Ag-O (Silver - Oxygen). In Binary Systems. Part 5: Binary Systems Supplement 1. Landolt-Börnstein - Group IV Physical Chemistry, vol 19B5. Springer, Berlin

  36. J.L. Brimhall, M.J. Klein, and R.A. Huggins: Acta Metall., 1966, vol. 14, pp. 459–66.

    Article  CAS  Google Scholar 

  37. W. Wasserbäch and W. Skrotzki: Mater. Charact., 2023, vol. 195, 112532.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Nippon Steel Corporation (contract dated 29 June 2016). We are deeply grateful to Prof. Dr. Toshiya Doi, Graduate School of Kyoto University for his help of the sputtering equipment. We thank Mr. Suguru Shiomi and Mr. Keijiro Saito, Graduate School of Kyoto University, for their cooperation in film preparation, Ms. Miyuki Takahashi, Mr. Shuichi Moriwake, Mr. Tetsuya Nagai, and Mr. Tomoya Hiragi of Nippon Steel Technology Co. Ltd. for their careful microstructure analysis, Mr. Yukimasa Ueda and Dr. Junpei Kobata of Osaka Research Institute of Industrial Science and Technology for their precise nanoindentation tests, and Dr. Ryuji Shinya and Mr. Yasuhito Fujishiro of Nippon Steel Technology Co. Ltd. for their advice on thin film analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Ueshima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

O2 flux through an Ag film (JO2) is shown as follows:

$$ J_{{{\text{O}}_{2} }} = D_{{\text{O}}} \cdot S_{{\text{O}}} \cdot {{\left( {\sqrt {P_{{{\text{O}}_{2} }} \left( {\text{I}} \right)} - \sqrt {P_{{{\text{O}}_{2} }} \left( {{\text{II}}} \right)} } \right)} \mathord{\left/ {\vphantom {{\left( {\sqrt {P_{{{\text{O}}_{2} }} \left( {\text{I}} \right)} - \sqrt {P_{{{\text{O}}_{2} }} \left( {{\text{II}}} \right)} } \right)} d}} \right. \kern-0pt} d} $$
(A1)

where DO is the diffusion coefficient of O in Ag, SO is solubility of O in Ag under PO2 = 1 atm, and symbols of (I) and (II) are inlet and outlet sides of O for Ag films, respectively. We estimated that JO2 > 0.1 Ncc/cm2/min would be required in a large-scale steelmaking plant. To achieve the value of JO2 for an Ag single-crystal film under the conditions of d = 1 μm, PO2(I) = 2.1 atm (pressurized air at 10 atm) and PO2(II) = 1 atm (pure O2 at 1 atm), using Eqs. [A2] and [A3], the film temperature of > 700 °C, i.e., oxygen permeability P (\(={D}_{{\text{O}}}\cdot {S}_{{\text{O}}}\)) of > 3×10-5 Ncc/cm/min/atm0.5 is required.

$$ D_{{\text{O}}} = D_{{\text{O}}}^{{{\text{lat}}}} $$
(A2)
$$ S_{{\text{O}}} = S_{{\text{O}}}^{{{\text{lat}}}} $$
(A3)

where the superscript of lat represents lattice of Ag. Values of \({D}_{{\text{O}}}^{{\text{lat}}}\) and \({S}_{{\text{O}}}^{{\text{lat}}}\) are listed in Table AI.

Table AI Values of DO, SO, and δ to Estimate P for Ag Thin Films

When the Ag film has nanocrystalline structure, the values of D and S can be evaluated as follows:

$$ D_{{\text{O}}} = D_{{\text{O}}}^{{{\text{lat}}}} \cdot \left( {1 - f^{{{\text{gb}}}} } \right) + D_{{\text{O}}}^{{{\text{gb}}}} \cdot f^{{{\text{gb}}}} $$
(A4)
$$ S_{{\text{O}}} = S_{{\text{O}}}^{{{\text{lat}}}} \cdot \left( {1 - f^{{{\text{gb}}}} } \right) + S_{{\text{O}}}^{{{\text{gb}}}} \cdot f^{{{\text{gb}}}} $$
(A5)
$$ D_{{\text{O}}}^{{{\text{gb}}}} = D_{{\text{O}}}^{{\text{L}}} $$
(A6)
$$ S_{{\text{O}}}^{{{\text{gb}}}} = S_{{\text{O}}}^{{\text{L}}} $$
(A7)
$$ f^{{{\text{gb}}}} = \delta /\left( {d_{{\text{g}}} /2 + \delta } \right) $$
(A8)

where fgb is an area fraction of Ag grain boundaries in the cross-section parallel to the Ag film surface, δ is a grain boundary width of Ag, and the superscripts of gb and L represent the grain boundary and the liquid state of Ag, respectively. Here, the grain boundary is assumed to be in the liquid state with a width of three atoms. Values of \({D}_{{\text{O}}}^{{\text{gb}}}\), \({S}_{{\text{O}}}^{{\text{gb}}}\), and δ are listed in Table AI.

To obtain the high value of P > 3×10-5 Ncc/cm/min/atm0.5 corresponding to two thousand times larger than that of single-crystal Ag at a waste gas temperature of 300 °C in a steelmaking plant, fast grain boundary diffusion of Ag films with dg < 50 nm corresponding to fgb > 4 pct is required.

Appendix 2

See Figures A1 and A2.

Fig. A1
figure 14

BF-STEM observations and particle analyses of the cross-section perpendicular to the substrate of the Ag–2 at. pct. Cu–1 at. pct. Al sputtered film before heating (Sample No. 4); full cross-section of the thin film (a), enlarged sub-surface region (b), and EDX analysis (c); fine particles at positions 1 and 2 were identified as those of Al2O3 containing a small amount of CuO; Ga peaks are due to contamination during the FIB sectioning process, and Mo and Si peaks originate from the Mo mesh support and silica substrate, respectively

Fig. A2
figure 15

BF-TEM observations and particle analysis of the cross-section perpendicular to the substrate of the Ag–2 at. pct. Cu–1 at. pct. Al film (Sample No. 4) after heating at 300 °C for 1000 h in air; full cross-section of the thin film (a), enlarged sub-surface region (b), nano-beam electron diffraction pattern with Miller indices at the position of the white circle (c), and EDX analysis (d); the coarse particle indicated by the white arrow was identified as CuO (tenorite) with monoclinic crystal structure

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueshima, Y., Hasegawa, M., Kubota, N. et al. Thermal Stability of Nanocrystalline Ag–Cu–Al Alloy Films with Densely Dispersed Alumina Particles Prepared via Reactive Sputtering Using Ar–O2 Mixed Gas. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07392-x

Navigation