Skip to main content
Log in

Welding Metallurgy and Weldability of High Manganese Structural Damping Steels

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fe–Mn alloys have been identified as suitable candidates for structural applications that require damping. Damping is the ability of a material to convert mechanical vibrations into other forms of energy (usually heat), which is then dissipated in the material. Fe–Mn alloys do this by the oscillatory movement of various boundaries in their microstructure. Fabricating large structural damping components often requires fusion welding, so it is important that these alloys are weldable. The welding metallurgy and weldability of three high manganese steels were investigated using Varestraint testing, 3D heat flow and solidification modeling, electron probe microanalysis (EPMA), and scanning electron microscopy (SEM). The high manganese steels studied were found to have poor resistance to solidification cracking compared to existing weldable commercial alloys. Through heat flow and solidification modeling, it was established that the ranking of the alloys in the Varestraint test correlated to the size of the crack-susceptible solid + liquid region formed during welding. This was further investigated by tracking solute segregation behavior and its effects on secondary phase formation. Aggressive solute segregation and the concomitant formation of deleterious secondary phases degraded weldability in these alloys. Although it is useful for damping purposes, Si was found to be particularly detrimental to weldability in Fe–Mn systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. I.G. Ritchie and Z.-L. Pan: Metall. Trans. A, 1991, vol. 22A, pp. 607–16.

    Article  CAS  Google Scholar 

  2. T.F. Volynova and I.B. Medov: Metal Sci. Heat Treat., 1998, vol. 40, pp. 155–62.

    Article  CAS  Google Scholar 

  3. J.-H. Jun, Y.-K. Lee, and C.-S. Choi: Mater. Sci. Technol., 2000, vol. 16, pp. 389–92.

    Article  CAS  Google Scholar 

  4. T. Sawaguchi, I. Nikulin, K. Ogawa, K. Sekido, S. Takamori, T. Maruyama, Y. Chiba, A. Kushibe, Y. Inoue, and K. Tsuzaki: Scr. Mater., 2015, vol. 99, pp. 49–52.

    Article  CAS  Google Scholar 

  5. Y. Watanabe, Y. Suga, H. Sato, H. Tsukamoto, and Y. Nishino: Mater. Trans., 2013, vol. 54, pp. 1288–94.

    Article  CAS  Google Scholar 

  6. S.-H. Baik: Nuclear Eng. Des., 2000, vol. 198, pp. 241–52.

    Article  CAS  Google Scholar 

  7. J.-C. Kim, D.-W. Han, S.-H. Baik, and Y.-K. Lee: Mater. Sci. Eng. A, 2004, vol. 378, pp. 323–27.

    Article  Google Scholar 

  8. H. Schumann: Neue Hutte, 1972, vol. 17, pp. 605–09.

    CAS  Google Scholar 

  9. L. John and K. Damian: Welding Metallurgy and Weldability of Stainless Steels, 1st ed. Wiley, Hoboken, 2005.

    Google Scholar 

  10. G.G. Ribamar, T.C. Andrade, H.C. De Miranda, and H.F.G. De Abreu: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 4812–25.

    Article  Google Scholar 

  11. R. Xiong, H. Peng, H. Si, W. Zhang, and Y. Wen: Mater. Sci. Eng. A, 2014, vol. 598, pp. 376–86.

    Article  CAS  Google Scholar 

  12. R. Xiong, H. Peng, S. Wang, H. Si, and Y. Wen: Mater. Des., 2015, vol. 85, pp. 707–14.

    Article  CAS  Google Scholar 

  13. D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, and J.E. Wittig: Acta Mater., 2015, vol. 100, pp. 178–90.

    Article  CAS  Google Scholar 

  14. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3076–90.

    Article  CAS  Google Scholar 

  15. H. Jacobi and K. Wünnenberg: Steel Res., 1999, vol. 70, pp. 362–67.

    Article  CAS  Google Scholar 

  16. G. Krauss: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 781–92.

    Article  CAS  Google Scholar 

  17. J. Yoo, K. Han, Y. Park, and C. Lee: Mater Chem Phys, 2014, vol. 148, pp. 499–502.

    Article  CAS  Google Scholar 

  18. A. Basso, I. Toda-Caraballo, D. San-Martín, and F.G. Caballero: J. Mater. Res. Technol., 2020, vol. 9, pp. 3013–25.

    Article  CAS  Google Scholar 

  19. F. Yoshinaka, T. Sawaguchi, S. Takamori, T. Nakamura, G. Arakane, Y. Inoue, S. Motomura, and A. Kushibe: Scr. Mater., 2021, vol. 197, pp. 1–5.

    Article  Google Scholar 

  20. M. Abbasi, S. Kheirandish, Y. Kharrazi, and J. Hejazi: Mater. Sci. Eng. A, 2009, vol. 513–514, pp. 72–76.

    Article  Google Scholar 

  21. B. Bal: Int. J. Steel Struct., 2018, vol. 18, pp. 13–23.

    Article  Google Scholar 

  22. D.T. Pierce: Dissertation, Vanderbilt University, 2014.

  23. M. Ganesan, D. Dye, and P.D. Lee: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2191–2204.

    Article  CAS  Google Scholar 

  24. C.J. Farnin, S. Orzolek, and J.N. DuPont: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 5771–80.

    Article  Google Scholar 

  25. J.N. DuPont, C.V. Robino, and T.D. Anderson: Sci. Technol. Weld. Join., 2008, vol. 13, pp. 550–65.

    Article  CAS  Google Scholar 

  26. Thermophysical and Electronic Properties Information Analysis Center: Thermophysical Properties of Matter - The TPRC Data Series Volume 1. Thermal Conductivity - Metallic Elements and Alloys, Lafayette IN, 1970.

  27. J.C. Lippold and W.F. Savage: Weld. J., 1982, vol. 61, pp. 388s–396s.

    Google Scholar 

  28. K. Liu, P. Yu, and S. Kou: Weld. J., 2020, vol. 99, pp. 255s–270s.

    Article  Google Scholar 

  29. S.-M. Liang, P. Yu, F. Zhang, and S. Kou: Sci. Technol. Weld. Join., 2021, vol. 26, pp. 606–13.

    Article  CAS  Google Scholar 

  30. T. Takalo, N. Suutala, and T. Moisio: Metall. Trans. B, 1979, vol. 10B, pp. 1173–81.

    Article  Google Scholar 

  31. N. Suutala: Metall. Trans. A, 1982, vol. 13A, pp. 2121–30.

    Article  Google Scholar 

  32. A. Di Schino, M.G. Mecozzi, M. Barteri, and J.M. Kenny: J. Mater. Sci., 2000, vol. 35, pp. 375–80.

    Article  Google Scholar 

  33. H. Peng, Y. Wen, Y. Du, J. Chen, and Q. Yang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 6–11.

    Article  Google Scholar 

  34. F.C. Hull: Weld J., 1973, vol. 52, pp. 193s–203s.

    Google Scholar 

  35. T. Soysal: Weld. World, 2021, vol. 65, pp. 1943–54.

    Article  CAS  Google Scholar 

  36. S. Kou: Metals (Basel), 2021, vol. 11, pp. 1–11.

    Article  Google Scholar 

  37. K. Kadoi, S. Ueno, and H. Inoue: J. Mater. Res. Technol., 2023, vol. 25, pp. 1314–21.

    Article  CAS  Google Scholar 

  38. A. Almomani, A.H.I. Mourad, and I. Barsoum: Eng. Fail. Anal., 2022, vol. 139, pp. 1–9.

    Article  Google Scholar 

  39. J. Yu, M. Rombouts, and G. Maes: Mater. Des., 2013, vol. 45, pp. 228–35.

    Article  CAS  Google Scholar 

  40. T. Fujii, D.R. Poirier, and M.C. Flemings: Metall. Trans. B, 1979, vol. 10B, pp. 331–39.

    Article  CAS  Google Scholar 

  41. A. Basso, A. Eres-Castellanos, N. Tenaglia, D. San-Martin, J.A. Jimenez, and F.G. Caballero: Metals (Basel), 2021, vol. 11, pp. 1–31.

    Article  Google Scholar 

  42. G.K. Sigworth: Int. J. Metalcast., 2014, vol. 8, pp. 7–20.

    Article  Google Scholar 

  43. Y. Huang, M. Long, P. Liu, D. Chen, H. Chen, L. Gui, T. Liu, and S. Yu: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2504–15.

    Article  Google Scholar 

  44. A. Jacob, C. Domain, G. Adjanor, P. Todeschini, and E. Povoden-Karadeniz: J. Nucl. Mater., 2020, vol. 533, pp. 1–14.

    Article  Google Scholar 

  45. S. Shi and J.C. Lippold: Mater. Charact., 2008, vol. 59, pp. 1029–40.

    Article  CAS  Google Scholar 

  46. V.E. Bazhenov, M.V. Pikunov, and V.V. Cheverikin: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 843–50.

    Article  Google Scholar 

  47. P.M.N. Ocansey and D.R. Pourier: Mater. Sci. Eng. A, 1996, vol. 211, pp. 10–14.

    Article  Google Scholar 

Download references

Acknowledgments

This research is sponsored by the Office of Naval Research (ONR), Arlington, VA, and the Defense Logistics Agency (DLA), Fort Belvoir, VA. The authors gratefully acknowledge useful discussions on this work from Dr. Matthew Draper and Dr Daniel Bechetti of the Naval Surface Warfare Center Carderock Division, Bethesda, MD.

Disclaimer

The publication of this material does not constitute approval by the government of the findings or conclusion herein. Wide distribution or announcement of this material shall not be made without specific approval by the sponsoring government activity.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Annor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annor, M., DuPont, J.N. Welding Metallurgy and Weldability of High Manganese Structural Damping Steels. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07383-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07383-y

Navigation