Skip to main content

Advertisement

Log in

The Microstructure Refinement and Mechanical Properties Improving of Friction Stir Processed Fe–Mn–Cr–N Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fe–Mn–Cr–N austenitic stainless steel is widely used in engineering fields because of its good ductility, but its relatively low yield strength limits its application range. In this study, Fe–Mn–Cr–N steel was fabricated with different parameters by friction stir processing (FSP). To explain the effect of the rotation rate and feed speed on the microstructure evolution and mechanical properties of Fe–Mn–Cr–N steel, four sets of parameters were selected. The numerical simulation results reveal that the maximum temperature and strain at the tool-workpiece interface on the advancing side (AS) are 948.8 °C and 39.3 mm/mm, respectively. Under the action of severe strain and frictional heat production during processing, the original coarse columnar grains were refined into uniform equiaxed grains with an average grain size of approximately 10 μm in the stir zone (SZ). Moreover, under the experimental conditions, the δ-ferrites gradually transformed into austenite, and all the δ-ferrites disappeared in the SZ with the greatest strain. In addition, a large number of Σ3 twins formed in this region. Consequently, microstructure refinement is dominated by dynamic recrystallization (DRX), while nucleation is accelerated by dissolution and spheroidization of δ ferrites and evolution of Σ3 twin boundaries. The Fe–Mn–Cr–N steel fabricated at 600 rpm-50 mm/min had the best comprehensive mechanical properties, i.e., its YS, UTS and El changed to 400.9, 649.0 MPa and 60.7 pct from 211.4, 421.2 MPa and 62.4 pct of the original as-casted Fe–Mn–Cr–N steel, respectively. The improvement in the YS was mainly attributed to solution strengthening (σSS = 114.4 MPa) and boundary strengthening (σGB = 189.5–238.1 MPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. A. Falekari, H.R. Jafarian, A.R. Eivani, M. Habibnejad-Korayemc, and A. Heidarzadeh: Mater. Sci. Eng. A, 2022, vol. 836, 142698.

    Article  CAS  Google Scholar 

  2. K.H. Lo, C.H. Shek, and J.K.L. Lai: Mater. Sci. Eng. R, 2009, vol. 65, pp. 39–104.

    Article  Google Scholar 

  3. D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma, W. Wang, and K. Yang: Mater. Des., 2014, vol. 64, pp. 355–59.

    Article  CAS  Google Scholar 

  4. Y. Miyano, H. Fujii, Y. Sun, et al.: Mater. Sci. Eng. A, 2011, vol. 528(6), pp. 2917–21.

    Article  Google Scholar 

  5. M. Kermajani, Sh. Raygan, K. Hanayi, and H. Ghaffari: Mater. Des., 2013, vol. 51, pp. 688–94.

    Article  CAS  Google Scholar 

  6. F.M. Qin, H. Zhu, Z.X. Wang, X.D. Zhao, W.W. He, and H.Q. Chen: Mater. Sci. Eng. A, 2016, vol. 684, pp. 634–44.

    Article  Google Scholar 

  7. R. Ke, X.L. Wan, Y.J. Zhang, C.Y. Hu, and K.M. Wu: Mater Charact, 2022, vol. 184, 111689.

    Article  CAS  Google Scholar 

  8. H.G. Tehrani-Moghadam, H.R. Jafarian, A. Heidarzadeh, A.R. Eivani, H. Do, and N. Park: Mater. Sci. Eng. A, 2020, vol. 773, 138876.

    Article  CAS  Google Scholar 

  9. M. Bhattacharyya, T. Gnaupel-Herold, K.S. Raja, J. Darsell, S. Jana, and I. Charit: Mater. Sci. Eng. A, 2021, vol. 826, 141982.

    Article  CAS  Google Scholar 

  10. R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. A, 2005, vol. 50, pp. 1–78.

    Article  Google Scholar 

  11. S. Mironov, Y.S. Sato, and H. Kokawa: J. Mater. Sci. Technol., 2018, vol. 34, pp. 58–72.

    Article  CAS  Google Scholar 

  12. S.H. Cho and Y.C. Yoo: J. Mater. Sci., 2001, vol. 36, pp. 4267–72.

    Article  CAS  Google Scholar 

  13. G.R. Ebrahimi, H. Keshmiri, and A. Momeni: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7488–93.

    Article  CAS  Google Scholar 

  14. M. El Wahabi, L. Gavard, and F. Montheillet: Acta Mater., 2005, vol. 53, pp. 4605–12.

    Article  Google Scholar 

  15. F.M. Qin, Y.J. Li, W.W. He, X.D. Zhao, and H.Q. Chen: J. Mater. Res., 2017, vol. 32, pp. 3864–74.

    Article  CAS  Google Scholar 

  16. T.R. McNelley, S. Swaminathan, and J.Q. Su: Scripta Mater., 2008, vol. 58, pp. 349–54.

    Article  CAS  Google Scholar 

  17. A. Askari, S. Silling, B. London, M. Mahoney, in: K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, D.P. Field. Friction Stir Welding and Processing, TMS, Warrendale, PA, 2001, pp. 43–50.

  18. D.P. Field, T.W. Nelson, Y. Hovanski, and K.V. Jata: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2869–77.

    Article  CAS  Google Scholar 

  19. Z.Y. Ma: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 642–58.

    Article  CAS  Google Scholar 

  20. S.S. Rezaei-Nejad, A. Abollah-zadeh, M. Hajian, F. Kargar, and R. Seraj: Procedia Mater. Sci., 2015, vol. 11, pp. 397–402.

    Article  CAS  Google Scholar 

  21. C. Meran and O.E. Canyurt: J. Achiev. Mater. Manuf. Eng., 2010, vol. 43(1), pp. 432–39.

    Google Scholar 

  22. K. Selvam, A. Prakash, H.S. Grewal, and H.S. Arora: Mater. Chem. Phys., 2017, vol. 197, pp. 200–07.

    Article  CAS  Google Scholar 

  23. M.P. Miles, T.W. Nelson, C. Gunter, F.C. Liu, and L. Fourment: J. Mater. Sci. Technol., 2019, vol. 35, pp. 491–98.

    Article  CAS  Google Scholar 

  24. S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, and S. Hirano: Scripta Mater., 2003, vol. 49, pp. 1175–80.

    Article  CAS  Google Scholar 

  25. S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, and M. Inagaki: Scripta Mater., 2004, vol. 51, pp. 101–05.

    Article  CAS  Google Scholar 

  26. M.C. Mataya, E.R. Nilsson, E.L. Brown, and G. Krauss: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1683–1703.

    Article  CAS  Google Scholar 

  27. M.C. Mataya, E.R. Nilsson, E.L. Brown, and G. Krauss: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 3021–41.

    Article  CAS  Google Scholar 

  28. R. Steel, S. Packer, S. Larsen, T. Daivs, D. Fleck, M. Mahoney. in 11th International Symposium on Friction Stir Welding, Cambridge, UK, 2016.

  29. F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, and T.W. Nelson: J. Mater. Sci. Technol., 2018, vol. 34, pp. 39–57.

    Article  CAS  Google Scholar 

  30. J.J. Jeon, S. Mironov, Y.S. Sato, et al.: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3157–66.

    Article  Google Scholar 

  31. Y.N. Zhang, X. Cao, S. Larose, and P. Wanjara: Can. Metall. Q., 2012, vol. 51(3), pp. 250–61.

    Article  CAS  Google Scholar 

  32. M.H. Shojaeefard, A. Khalkhali, M. Akbari, and P. Asadi: J. Mater., 2015, vol. 229(3), pp. 209–17.

    CAS  Google Scholar 

  33. C.L. Yang, Q.L. Dai, Q.Y. Shi, C.S. Wu, H. Zhang, and G.Q. Chen: J. Manuf. Process., 2022, vol. 79, pp. 394–404.

    Article  Google Scholar 

  34. H. Schmidt, J. Hattel, and J. Wert: Model. Simul. Mater. Sci. Eng., 2004, vol. 12, pp. 143–57.

    Article  Google Scholar 

  35. S. Ghadar, A. Momeni, E. Khademi, and Sh. Kazemi: Mater. Sci. Eng. B, 2021, vol. 263, 114813.

    Article  CAS  Google Scholar 

  36. D.L. Sang, X.L. Xin, R.D. Fu, and Y.J. Li: J. Alloy Compds., 2022, vol. 922, 166272.

    Article  CAS  Google Scholar 

  37. D.L. Sang, R.D. Fu, Y.P. Wang, and Y.J. Li: Mater. Sci. Eng. A, 2019, vol. 747, pp. 130–35.

    Article  CAS  Google Scholar 

  38. D.L. Sang, R.D. Fu, Y.J. Li, Y.P. Wang, and J. Kang: J. Alloy. Compd., 2018, vol. 735, pp. 2395–2400.

    Article  CAS  Google Scholar 

  39. W.B. Huang, Y.M. Zhang, and W.B. Dai: Mater. Sci. Eng. A, 2019, vol. 758, p. 6070.

    Article  Google Scholar 

  40. F.M. Qin, Y.J. Li, W.W. He, et al.: Met. Mater. Int., 2017, vol. 23(6), pp. 1087–96.

    Article  CAS  Google Scholar 

  41. A. Pinol-Juez, A. Iza-Mendia, and I. Gutierrez: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1671–77.

    Article  CAS  Google Scholar 

  42. S. Mandal, P.V. Sivaprasad, B. Raj, and V. Subramanya Sarma: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 3298–3307.

    Article  CAS  Google Scholar 

  43. V.S.A. Challa, X.L. Wan, M.C. Somani, L.P. Karjalainen, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 613, pp. 60–70.

    Article  CAS  Google Scholar 

  44. S.M. Lee, S.J. Lee, S. Lee, J.H. Nam, and Y.K. Lee: Acta Mater., 2018, vol. 144, pp. 738–47.

    Article  CAS  Google Scholar 

  45. C. Herrera and D. Pomge: Acta Mater., 2011, vol. 59(11), pp. 4653–64.

    Article  CAS  Google Scholar 

  46. Y.T. Zhu, X.Z. Liao, and X.L. Wu: Prog. Mater. Sci., 2012, vol. 57(1), pp. 1–62.

    Article  CAS  Google Scholar 

  47. E.M. Lehockey, G. Palumbo, and P. Lin: Scr. Mater., 1998, vol. 39, pp. 353–58.

    Article  CAS  Google Scholar 

  48. B. Gao, L. Wang, Y. Liu, et al.: Scripta Mater., 2023, vol. 234, 115538.

    Article  CAS  Google Scholar 

  49. X.X. Geng, J.H. Gao, Y.H. Huang, et al.: Acta Mater., 2023, vol. 252, 118925.

    Article  CAS  Google Scholar 

  50. G. Park, C.H. Nam, A. Zargaran, and N.J. Kim: Scr. Mater., 2019, vol. 165, pp. 68–72.

    Article  CAS  Google Scholar 

  51. J.H. Hwang, T.T.T. Trang, O. Lee, G. Park, A. Zargaran, and N.J. Kim: Acta Mater., 2020, vol. 191, pp. 1–12.

    Article  CAS  Google Scholar 

  52. W. Zhai, W. Zhou, and S.M.L. Nai: Mater. Sci. Eng., 2022, vol. 829, 142179.

    Article  CAS  Google Scholar 

  53. W. Zhai, W. Zhou, and S.M.L. Nai: Mater. Sci. Eng., 2022, vol. 832, 142460.

    Article  CAS  Google Scholar 

  54. Y.J. Li, C.R. Ma, F.M. Qin, et al.: Mater. Sci. Eng. A, 2023, vol. 870, 144820.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge to the financial support by Fundamental Research Program of Shanxi Province (202103021224282, 202103021223288), Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (2020L0331, 2020L0341) and Central government guides local funds for science and technology development (YDZJSX20231A045).

Author information

Authors and Affiliations

Authors

Contributions

Fengming Qin: Conceptualization, Methodology, Writing, Formal analysis, Funding acquisition, Supervision. Tong Yang: Data curation, Writing—original draft. Yajie Li: Investigation, Data curation. Huiqin Chen: Formal analysis, Investigation. Xiaodong Zhao: Supervision, Writing—review & editing.

Corresponding author

Correspondence to Yajie Li.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, F., Yang, T., Li, Y. et al. The Microstructure Refinement and Mechanical Properties Improving of Friction Stir Processed Fe–Mn–Cr–N Steel. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07377-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07377-w

Navigation