Skip to main content
Log in

Effect of Laser Power and Scan Speed on the Microstructure and Texture Evolution in Cr Claddings Developed over V Substrate Using Laser-Induced Directed Energy Deposition

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, microstructures and texture of Cr clads developed on V plate using laser-assisted Directed Energy Deposition (DED) at different laser power and scan speeds have been investigated using scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), and transmission electron microscopy (TEM) techniques. This investigation has shown that at low laser power grains at the interface region of clad and substrate show equiaxed morphology with random orientation and at high laser power grains have columnar morphology with strong rotated cube texture <001> {110}, while middle region of all clads showed columnar morphology. In the top region of the clad, at low laser power the grain morphology remained columnar and at high laser power, columnar grains transformed to equiaxed morphology. Theoretically estimated temperature profiles and energy calculations have shown that the equiaxed grains developed at low laser power is due to incomplete melting of powder particles and transformation of columnar to equiaxed grains at the top region of clad at high laser power was due to constitutional super cooling resulted by compositional dilution. A process parameter map between laser energy density and number of powder particles has been developed to predict the microstructure of clads at a given laser power and scan speed. The experimental observation of all the clads showed that the clads developed at high laser power and low scan speed exhibit superior physical integrity and higher micro-hardness which is favorable for the development of crack-free transition joints of V and Cr. The optimized laser parameters can be used to develop the SS-Ti joint by DED process using V and Cr interlayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.N. Jinoop, C.P. Paul, and K.S. Bindra: Proc. Inst. Mech. Eng. Part L, 2019, vol. 233, pp. 2376–2400.

    CAS  Google Scholar 

  2. R. Liu, Z. Wang, T. Sparks, F. Liou, and J. Newkirk: Laser Addit. Manuf. Mater. Des. Technol. Appl., 2017, https://doi.org/10.1016/B978-0-08-100433-3.00013-0.

    Article  Google Scholar 

  3. V. Errico, A. Fusco, and S.L. Campanelli: Surf. Coat. Technol., 2022, vol. 429, 127965.

    Article  CAS  Google Scholar 

  4. S. Gorsse, C. Hutchinson, M. Gouné, and R. Banerjee: Sci. Technol. Adv. Mater., 2017, vol. 18, pp. 584–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. K. Morshed-Behbahani, D.P. Bishop, and A. Nasiri: Mater. Horizons, 2023, vol. 10, pp. 5391–5435.

    Article  CAS  Google Scholar 

  6. L.D. Bobbio, R.A. Otis, J.P. Borgonia, R.P. Dillon, A.A. Shapiro, Z.K. Liu, and A.M. Beese: Acta Mater., 2017, vol. 127, pp. 133–42.

    Article  CAS  Google Scholar 

  7. B.E. Carroll, R.A. Otis, J.P. Borgonia, J.O. Suh, R.P. Dillon, A.A. Shapiro, D.C. Hofmann, Z.K. Liu, and A.M. Beese: Acta Mater., 2016, vol. 108, pp. 46–54.

    Article  CAS  Google Scholar 

  8. A. Hinojos, J. Mireles, A. Reichardt, P. Frigola, P. Hosemann, L.E. Murr, and R.B. Wicker: Mater. Des., 2016, vol. 94, pp. 17–27.

    Article  CAS  Google Scholar 

  9. A. Reichardt, R.P. Dillon, J.P. Borgonia, A.A. Shapiro, B.W. McEnerney, T. Momose, and P. Hosemann: Mater. Des., 2016, vol. 104, pp. 404–13.

    Article  CAS  Google Scholar 

  10. F. Khodabakhshi, M.H. Farshidianfar, S. Bakhshivash, A.P. Gerlich, and A. Khajepour: J. Manuf. Process., 2019, vol. 43, pp. 83–97.

    Article  Google Scholar 

  11. W. Li, F. Liou, J. Newkirk, K.M.B. Taminger, and W.J. Seufzer: Sci. Rep., 2017, vol. 7, pp. 1–4.

    Article  Google Scholar 

  12. I. Tomashchuk, D. Grevey, and P. Sallamand: Mater. Sci. Eng. A, 2015, vol. 622, pp. 37–45.

    Article  CAS  Google Scholar 

  13. C. Shang, G. Xu, C. Wang, G. Yang, and J. You: Mater. Lett., 2019, vol. 252, pp. 342–44.

    Article  CAS  Google Scholar 

  14. T. Wang, B. Zhang, J. Feng, and Q. Tang: Mater Charact, 2012, vol. 73, pp. 104–13.

    Article  CAS  Google Scholar 

  15. M.M. Quazi, M. Ishak, M.A. Fazal, A. Arslan, S. Rubaiee, A. Qaban, M.H. Aiman, T. Sultan, M.M. Ali, and S.M. Manladan: Opt. Laser Technol., 2020, vol. 126, 106090.

    Article  CAS  Google Scholar 

  16. A. Mannucci, I. Tomashchuk, A. Mathieu, R. Bolot, E. Cicala, S. Lafaye, and C. Roudeix: J. Adv. Join. Process., 2020, vol. 1, 100022.

    Article  Google Scholar 

  17. N. Kwabena, J.O. Kim, S. Hwan, K. Noh, and J.H. Kim: Mater. Sci. Eng. A, 2018, vol. 732, pp. 378–97.

    Article  Google Scholar 

  18. S. Kundu, S. Sam, and S. Chatterjee: Mater. Des., 2011, vol. 32, pp. 2997–3003.

    Article  CAS  Google Scholar 

  19. N. Orhan, T.I. Khan, and M. Eroǧlu: Scr. Mater., 2001, vol. 45, pp. 441–46.

    Article  CAS  Google Scholar 

  20. X. Hao, H. Dong, F. Yu, P. Li, and Z. Yang: J. Mater. Res. Technol., 2021, vol. 13, pp. 48–60.

    Article  CAS  Google Scholar 

  21. B. Onuike and A. Bandyopadhyay: Addit. Manuf., 2018, vol. 22, pp. 844–51.

    CAS  Google Scholar 

  22. B. Onuike and A. Bandyopadhyay: Addit. Manuf., 2020, vol. 31, 100931.

    CAS  PubMed  Google Scholar 

  23. D.G. Ahn: Int. J. Precis. Eng. Manuf., 2021, vol. 8, pp. 703–42.

    Google Scholar 

  24. M. Ziętala, T. Durejko, M. Polański, I. Kunce, T. Płociński, W. Zieliński, M. Łazińska, W. Stępniowski, T. Czujko, K.J. Kurzydłowski, and Z. Bojar: Mater. Sci. Eng. A, 2016, vol. 677, p. 10.

    Article  Google Scholar 

  25. J. Gordon, J. Hochhalter, C. Haden, and D.G. Harlow: Mater. Des., 2019, vol. 168, 107630.

    Article  CAS  Google Scholar 

  26. G.T. Gray, V. Livescu, P.A. Rigg, C.P. Trujillo, C.M. Cady, S.R. Chen, J.S. Carpenter, T.J. Lienert, and S.J. Fensin: Acta Mater., 2017, vol. 138, pp. 140–49.

    Article  CAS  Google Scholar 

  27. T.R. Smith, J.D. Sugar, C.S. Marchi, and J.M. Schoenung: Acta Mater., 2019, vol. 164, pp. 728–40.

    Article  CAS  Google Scholar 

  28. M. Gremaud, M. Carrard, and W. Kurz: Acta Metall. Mater., 1991, vol. 39, pp. 1431–43.

    Article  CAS  Google Scholar 

  29. M. Carrard, M. Gremaud, M. Zimmermann, and W. Kurz: Acta Metall. Mater., 1992, vol. 40, pp. 983–96.

    Article  CAS  Google Scholar 

  30. W. Kurz, B. Giovanola, and R. Trivedi: Acta Metall., 1986, vol. 34, pp. 823–30.

    Article  CAS  Google Scholar 

  31. W. Kurz, C. Bezençon, and M. Gäumann: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 185–91.

    Article  CAS  Google Scholar 

  32. H. Song, J. Lei, J. Xie, S. Wu, L. Wang, and W. Shou: J. Alloys Compd., 2019, vol. 805, pp. 551–64.

    Article  CAS  Google Scholar 

  33. J.A. Spittle: Int. Mater. Rev., 2006, vol. 51, pp. 247–69.

    Article  CAS  Google Scholar 

  34. F. Yan, W. Xiong, and E.J. Faierson: Materials (Basel), 2017, vol. 10, p. 1260.

    Article  Google Scholar 

  35. A.F. Chadwick and P.W. Voorhees: Acta Mater., 2021, vol. 211, 116862.

    Article  CAS  Google Scholar 

  36. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock: Nature, 2017, vol. 549, pp. 365–69.

    Article  CAS  PubMed  Google Scholar 

  37. F. Zhang, M. Mei, K. Al-Hamdani, H. Tan, and A.T. Clare: Mater. Lett., 2018, vol. 213, pp. 197–200.

    Article  CAS  Google Scholar 

  38. X. Wu, R. Sharman, J. Mei, and W. Voice: Mater. Des., 2004, vol. 25, pp. 103–09.

    Article  CAS  Google Scholar 

  39. Q. Zhang, J. Chen, L. Wang, H. Tan, X. Lin, and W. Huang: J. Mater. Sci. Technol., 2016, vol. 32, pp. 381–86.

    Article  CAS  Google Scholar 

  40. D. Ma, A.D. Stoica, Z. Wang, and A.M. Beese: Mater. Sci. Eng. A, 2017, vol. 684, pp. 47–53.

    Article  CAS  Google Scholar 

  41. H.L. Wei, J. Mazumder, and T. DebRoy: Mater. Sci. Eng. A, 2015, vol. 14, pp. 1–7.

    CAS  Google Scholar 

  42. O. Gokcekaya, N. Hayashi, T. Ishimoto, K. Ueda, T. Narushima, and T. Nakano: Addit. Manuf., 2020, vol. 36, 101624.

    CAS  Google Scholar 

  43. N. Nadammal, S. Cabeza, T. Mishurova, T. Thiede, A. Kromm, C. Seyfert, L. Farahbod, C. Haberland, J. Ann, P. Dolabella, and G. Bruno: Mater. Des., 2017, vol. 134, pp. 139–50.

    Article  CAS  Google Scholar 

  44. Q. Zhang, J. Chen, P. Guo, H. Tan, X. Lin, and W. Huang: Mater. Des., 2015, vol. 88, pp. 550–57.

    Article  CAS  Google Scholar 

  45. N. Sridharan, A. Chaudhary, P. Nandwana, and S.S. Babu: J. Miner. Met. Mater. Soc., 2016, vol. 20, pp. 4–9.

    Google Scholar 

  46. L.L. Parimi, G.A. Ravi, D. Clark, and M.M. Attallah: Mater Charact, 2013, vol. 89, pp. 102–11.

    Article  Google Scholar 

  47. E. Aydogan, S. Pal, O. Anderoglu, S.A. Maloy, S.C. Vogel, G.R. Odette, J.J. Lewandowski, D.T. Hoelzer, I.E. Anderson, and J.R. Rieken: Mater. Sci. Eng. A, 2016, vol. 661, pp. 222–32.

    Article  CAS  Google Scholar 

  48. Q. Wang, S. Zhang, C. Zhang, C. Wu, J. Wang, J. Chen, and Z. Sun: Vaccum, 2017, vol. 141, pp. 68–81.

    Article  CAS  Google Scholar 

  49. S. Zhang, Y. Lei, Z. Chen, P. Wei, W. Liu, S. Yao, and B. Lu: Materials (Basel), 2021, vol. 14, p. 4305.

    Article  CAS  PubMed  Google Scholar 

  50. M. Higashi and T. Ozaki: Mater. Des., 2020, vol. 191, 108588.

    Article  CAS  Google Scholar 

  51. P. Kumar and U. Ramamurty: Acta Mater., 2019, vol. 169, pp. 45–59.

    Article  CAS  Google Scholar 

  52. G.P. Dinda, A.K. Dasgupta, and J. Mazumder: Scr. Mater., 2012, vol. 67, pp. 503–06.

    Article  CAS  Google Scholar 

  53. G.P. Dinda, A.K. Dasgupta, and J. Mazumder: Mater. Sci. Eng. A, 2009, vol. 509, pp. 98–104.

    Article  Google Scholar 

  54. X.Y. Fang, H.Q. Li, M. Wang, C. Li, and Y.B. Guo: Mater Charact, 2018, vol. 143, pp. 182–90.

    Article  CAS  Google Scholar 

  55. D. Svetlizky, B. Zheng, A. Vyatskikh, M. Das, S. Bose, A. Bandyopadhyay, J.M. Schoenung, E.J. Lavernia, and N. Eliaz: Mater. Sci. Eng. A, 2022, vol. 840, 142967.

    Article  CAS  Google Scholar 

  56. C. Tenbrock, F.G. Fischer, K. Wissenbach, J.H. Schleifenbaum, P. Wagenblast, W. Meiners, and J. Wagner: J. Mater. Process. Technol., 2020, vol. 278, 116514.

    Article  Google Scholar 

  57. T.W. Eagar and N.S. Tsai: Weld. J., 1983, vol. 62, pp. 346–55.

    Google Scholar 

  58. S. Mondal, D. Gwynn, A. Ray, and A. Basak: Metals (Basel), 2020, vol. 10, pp. 1–23.

    Article  Google Scholar 

  59. V.I. Tolochko, N.K. Khlopkov, Y.V. Mozzharov, S.E. Ignatiev, M.B. Laoui, and V.I. Titov: Rapid Prototyp. J., 2000, vol. 6, pp. 155–61.

    Article  Google Scholar 

  60. F. Lia, J. Park, J. Tressler, and R. Martukanitz: Addit. Manuf., 2017, vol. 18, pp. 31–39.

    CAS  Google Scholar 

  61. D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase Transformations in Metals and Alloys, 3rd ed. Springer, New York, 2009.

    Google Scholar 

  62. Y. Wen and J.-M. Zhang: Comput. Mater. Sci., 2008, vol. 42, pp. 281–85.

    Article  CAS  Google Scholar 

  63. Y. Lee, M. Nordin, S.S. Babu, and D.F. Farson: Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition, vol. 45, Springer, New York, 2014.

    Google Scholar 

  64. R. Chai, Y. Zhang, B. Zhong, and C. Zhang: Rev. Adv. Mater. Sci., 2021, vol. 60, pp. 744–60.

    Article  CAS  Google Scholar 

  65. M. Gäumann, C. Bezençon, P. Canalis, and W. Kurz: Acta Mater., 2001, vol. 49, pp. 1051–62.

    Article  Google Scholar 

  66. R. Darabi, A. Ferreira, E. Azinpour, J.C. de Sa, and A. Reis: Int. J. Adv. Manuf. Technol., 2022, vol. 119, pp. 3975–93.

    Article  Google Scholar 

  67. O.B. Kovalev, A.V. Zaitsev, D. Novichenko, and I. Smurov: J. Therm. Spray Technol., 2011, vol. 20, pp. 465–78.

    Article  CAS  Google Scholar 

  68. A.J. Pinkerton: J. Phys. D, 2007, vol. 40, pp. 7323–34.

    Article  CAS  Google Scholar 

  69. J. Ibarra-Medina and A.J. Pinkerton: Surf. Eng., 2011, vol. 27, pp. 754–61.

    Article  CAS  Google Scholar 

  70. M.W. Chase and N.I.S.O. (US): NIST-JANAF Thermochemical Tables, vol. 9. American Chemical Society Washington, DC, 1998.

Download references

Acknowledgments

Authors are thankful to Dr. Arijit Laik, of Materials Science Division, BARC, Mumbai, India for writing assistance. Authors are also thankful to Shri Upendra Kumar of Laser Additive Manufacturing Laboratory, RRCAT, Indore, India for carrying out laser DED experiments. The work was funded by Department of Atomic Energy, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Singh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The analytical solution for a concentrated energy source having a Gaussian geometry developed by Eagar and Tsai[57] is provided in Eq. [A–1].

$$ \theta = \frac{n}{{\sqrt {2\pi } }}\mathop \smallint \limits_{0}^{{\frac{{v^{2} t}}{2a}}} d\tau \frac{{\tau^{{\frac{ - 1}{2}}} }}{{\tau + u^{2} }}e^{{ - \frac{{\xi^{2} + \varphi^{2} + 2\xi \varphi + \tau^{2} }}{{2\tau + 2u^{2} }} - \frac{{\Gamma^{2} }}{2\tau }}}, $$
(A-1)

where \(a, c, v, {T}_{\text{c}},{T}_{0}, T, \sigma , \theta , P, u, n, \xi ,\varphi ,\Gamma \) represents thermal diffusivity (cm2 s−1), specific heat (J g−1 K−1), scan speed (cm s−1), melting temperature (K), initial temperature (K), instantaneous temperature (K), distribution parameter, dimensionless temperature (\((T- {T}_{0})/({T}_{\text{c}} - {T}_{0})\)), laser power (W), dimensionless distribution parameter (\(v\sigma /2a\)), operating parameter (\(qv/4\pi {a}^{2}\rho c[{T}_{\text{c}}-{T}_{0}]\)), dimensionless distance along x axis (\(v(x-vt)/2a\)), dimensionless distance along y axis (\(vy/2a\)), dimensionless distance along z axis (\(vz/2a\)), respectively (Table AI).

Table AI The Values of Specific Heat, Thermal Diffusivity, and Thermal Conductivity of Cr and V Obtained from Database[70]

The concentration coefficient (\(\sigma \)) was estimated by considering radius of laser beam. The laser interaction time t was estimated by dividing laser beam diameter with scan speed. The above analytical solution does not consider effect of convection and radiation. Therefore, values of convection coefficient and Stefan–Boltzmann constant are not considered. The attenuation of laser power by powder stream was included by considering an average 15 pct decrease in laser power. The absorptance of V was estimated using Eq. [A–2], where value of R was obtained using Fresnel equation.

$$ A + R = 1;\;{\text{where}}\;R = \left| {\frac{{\left( {n - 1} \right)^{2} + k^{2} }}{{\left( {n + 1} \right)^{2} + k^{2} }}} \right|. $$
(A-2)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Vishwanadh, B., Paul, C.P. et al. Effect of Laser Power and Scan Speed on the Microstructure and Texture Evolution in Cr Claddings Developed over V Substrate Using Laser-Induced Directed Energy Deposition. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07374-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07374-z

Navigation