Skip to main content
Log in

Evolution of the Stored Energy Density in a X2CrNiMo17-12-2 Austenitic Steel Under Cyclic Loading Conditions

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present work, the impact of cyclic loading conditions on the accumulation of stored energy in an austenitic steel is investigated. For this purpose, in situ X-ray diffraction analyses were carried out to estimate the stored energy density from integral breadths. Specifically, uniaxial cyclic tests were performed for different stress amplitudes, loading ratios and numbers of loading cycles. The Williamson and Hall method was used to evaluate the microstructural changes resulting from a loading history. The comparison with experimental data available in the literature suggests that the number of cycles to failure is not solely related to the stored energy density. Indeed, while the loading ratio impacts the number of cycles to failure, it has no visible influence on the stored energy density. Also, whatever the loading ratio is, energy is mostly stored during the first loading cycle. No significant evolution of the stored energy density is observed during the following loading cycles. Finally, experimental results indicate that the fraction of the work that is stored within the material is small, about a few percent for the investigated loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Strictly speaking, the interrupted tension test is not monotonic as the stress does not continuously increase during the test. However, since no significant static recovery occurs during interruptions, the results are similar to those obtained under strict monotonic loading conditions (see Figure 6).

References

  1. G. Sines, J.L. Waisman, and T.J. Dolan: Behaviour of metals under complex static and alternating stress, in Metal Fatigue. G. Sines and J.L. Waisman, eds., McGraw-Hill, New York, 1959.

    Google Scholar 

  2. B. Crossland: Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel. in Proceedings of International Conference on Fatigue of Metals, London, 1956, pp. 138–49.

  3. K.D. Van: Sci. Tech. Armement, 1973, vol. 47, pp. 641–722.

    Google Scholar 

  4. E.Z. Stowell: Nucl. Eng. Des., 1966, vol. 3, pp. 32–40.

    Article  CAS  Google Scholar 

  5. B.N. Leis: J. Press. Vessel. Technol., 1977, vol. 99, pp. 524–33. https://doi.org/10.1115/1.3454571.

    Article  Google Scholar 

  6. T. Palin-Luc and S. Lasserre: Eur. J. Mech. A, 1998, vol. 17, pp. 237–51. https://doi.org/10.1016/S0997-7538(98)80084-3.

    Article  Google Scholar 

  7. G.L. Rosa and A. Risitano: Int. J. Fatigue, 2000, vol. 22, pp. 65–73.

    Article  Google Scholar 

  8. C. Doudard, S. Calloch, F. Hild, P. Cugy, and A. Galtier: CR Mécanique, 2004, vol. 332, pp. 795–801.

    Article  CAS  Google Scholar 

  9. R. Munier, C. Doudard, S. Calloch, and B. Weber: Int. J. Fatigue, 2014, vol. 63, pp. 46–61. https://doi.org/10.1016/j.ijfatigue.2014.01.004.

    Article  CAS  Google Scholar 

  10. V.V.C. Wan, D.W. MacLachlan, and F.P.E. Dunne: Int. J. Fatigue, 2014, vol. 68, pp. 90–102. https://doi.org/10.1016/j.ijfatigue.2014.06.001.

    Article  CAS  Google Scholar 

  11. B. Chen, J. Jiang, and F.P.E. Dunne: Int. J. Plast., 2018, vol. 101, pp. 213–29.

    Article  CAS  Google Scholar 

  12. J. Warren and D.Y. Wei: Int. J. Fatigue, 2010, vol. 32, pp. 1853–61. https://doi.org/10.1016/j.ijfatigue.2010.05.003.

    Article  CAS  Google Scholar 

  13. J. Lemaitre, R. Desmorat, and M. Sauzay: Eur. J. Mech. A, 2000, vol. 19, pp. 187–208.

    Article  Google Scholar 

  14. J. Lemaitre and R. Desmorat, eds.: Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures, Springer, Berlin, 2005.

    Google Scholar 

  15. M.B. Bever, D.L. Holt, and A.L. Titchener: Prog. Mater. Sci., 1973, vol. 17, pp. 833–49.

    Article  Google Scholar 

  16. L.M. Clarebrough, M.E. Hargreaves, G.W. West, and A.K. Head: Proc. R. Soc. Lond. Ser. A, 1957, vol. 242, pp. 160–66.

    Article  CAS  Google Scholar 

  17. G.R. Halford: Stored energy of cold work changes induced by cyclic deformation. PhD Thesis, University of Illinois, 1966.

  18. A. Chrysochoos, A. Blanche, B. Berthel, and B. Wattrisse: Energy balance properties of steels subjected to high cycle fatigue, in Thermomechanics and Infra-Red Imaging. T. Proulx, ed., Springer, New York, 2011, pp. 39–58.

    Chapter  Google Scholar 

  19. C. Mareau, D. Cuillerier, and F. Morel: Mech. Mater., 2013, vol. 60, pp. 93–106. https://doi.org/10.1016/j.mechmat.2013.01.011.

    Article  Google Scholar 

  20. M. Taheri, H. Weiland, and A. Rollett: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 19–25.

    Article  CAS  Google Scholar 

  21. S.S. Hazra, A.A. Gazder, and E.V. Pereloma: Mater. Sci. Eng. A, 2009, vol. 524, pp. 158–67. https://doi.org/10.1016/j.msea.2009.06.033.

    Article  CAS  Google Scholar 

  22. N. Rajmohan, Y. Hayakawa, J.A. Szpunar, and J.H. Root: Acta Mater., 1997, vol. 45, pp. 2485–94. https://doi.org/10.1016/S1359-6454(96)00371-0.

    Article  CAS  Google Scholar 

  23. M.H. Loretto, M.E. Hargreaves, and L.M.J. Clarebrough: Aust. Hlst. Met., 1963, vol. 8, p. 127.

    CAS  Google Scholar 

  24. V. Mote, Y. Purushotham, and B. Dole: J. Theoret. Appl. Phys., 2012, vol. 6, pp. 1–8. https://doi.org/10.1186/2251-7235-6-6.

    Article  Google Scholar 

  25. G.R. Stibitz: Phys. Rev., 1936, vol. 49, p. 862.

    CAS  Google Scholar 

  26. A. Teklu, H. Ledbetter, S. Kim, L.A. Boatner, M. McGuire, and V. Keppens: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3149–54.

    Article  CAS  Google Scholar 

  27. O.W. Dillon: Plastic deformation waves and heat generated near the yield point of annealed aluminum, in Mechanical Behavior of Materials Under Dynamic Loads. U.S. Lindholm, ed., Springer, Berlin, 1968, pp. 20–61. https://doi.org/10.1007/978-3-642-87445-1_3.

    Chapter  Google Scholar 

  28. L. Vincent: Eur. J. Mech. A, 2008, vol. 27, pp. 161–80.

    Article  Google Scholar 

  29. L. Fang, W. Zhao, Y. Wei, Q. Zhang, L. Zhang, N. Ali, H. Zhou, and H. Wei: Mater. Res., 2022, vol. 25, pp. 1–8. https://doi.org/10.1590/1980-5373-MR-2021-0401.

    Article  Google Scholar 

  30. M. Mineur: Conditions locales d’amorçage des fissures de fatigue dans un acier inoxydable de type 316L : aspects cristallographiques (EBSD). PhD Thesis, Université de Poitiers, 2000.

  31. R. Guerchais: Influence d’accidents géométriques et du mode de chargement sur le comportement en fatigue à grand nombre de cycles d’un acier inoxydable austénitique 316L. PhD Thesis, École nationale supérieure d’arts et métiers, 2014.

  32. J. Peng, Y. Gao, Q. Dai, Y. Wang, and K. Li: Acta Metall. Sin., 2019, vol. 55, pp. 773–82.

    CAS  Google Scholar 

  33. J.E. Bailey and P.B. Hirsch: Philos. Mag., 1960, vol. 5, pp. 485–97. https://doi.org/10.1080/14786436008238300.

    Article  CAS  Google Scholar 

  34. A.A. Benzerga, Y. Bréchet, A. Needleman, and E.V. Giessen: Acta Mater., 2005, vol. 53, pp. 4765–79.

    Article  CAS  Google Scholar 

  35. L. Kubin, B. Devincre, and T. Hoc: Acta Mater., 2008, vol. 56(20), pp. 6040–49. https://doi.org/10.1016/j.actamat.2008.08.012.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Mareau.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Relation Between the Integral Breadth of Diffraction Peaks and the Stored Energy Density

Appendix A Relation Between the Integral Breadth of Diffraction Peaks and the Stored Energy Density

Equation [2] exploits the relation between the width of diffraction peaks and the stored energy. Indeed, according to the Bragg equation, the lattice spacing \(d_{hkl}\) associated with a \(\{hkl \}\) set of equivalent planes is related to the Bragg angle \(\theta _{hkl}\) with:

$$\begin{aligned} 2 d_{hkl} \sin \theta _{hkl} = \lambda \end{aligned}$$
(A1)

The differentiation of the above equation allows relating the variation of lattice spacing \(\Delta d_{hkl}\) to the width of diffraction peaks \( \Delta 2 \theta _{hkl}\) according to:

$$\begin{aligned} \frac{\Delta d_{hkl}}{d_{hkl}}= \frac{ \Delta 2 \theta _{hkl}}{2 \tan \theta _{hkl}} \end{aligned}$$
(A2)

In the above equation, \(\Delta d_{hkl}/d_{hkl}\) can be interpreted as the root mean square strain resulting from the internal stress field produced by lattice defects. Since energy storage in crystalline materials is mostly controlled by lattice defects,[25] proposed to estimate the stored energy from \(\Delta d_{hkl}/d_{hkl}\) with:

$$\begin{aligned} u_{hkl} = \frac{3}{2} \frac{E_{hkl}}{1+2 \nu ^2_{hkl}} \left( \frac{\Delta d_{hkl}}{d_{hkl}} \right) ^2 \end{aligned}$$
(A3)

However, in a typical diffraction experiment, the width of diffraction peaks includes an instrumental contribution, which does not provide any information on the microstructure. To exclude such a contribution,[22] used a modified version of Eq. [A2]:

$$\begin{aligned} \frac{\Delta d_{hkl}}{d_{hkl}}= \frac{ \sqrt{(\Delta 2 \theta _{hkl})^2-(\Delta 2 \theta _{0,hkl})^2} }{2 \tan \theta _{hkl}} \end{aligned},$$
(A4)

where \(\Delta 2 \theta _{0,hkl}\) is the peak width measured for an annealed specimen with negligible stored energy. In the present work, an equivalent form of the above equation, which is based on reciprocal quantities, is used. The reciprocal lattice spacing \(d^\star _{hkl}\) and the reciprocal integral breadth \(\beta ^\star _{hkl}\) are given by:

$$\begin{aligned}&d^\star _{hkl}=\frac{2 \sin \theta _{hkl}}{\lambda } \end{aligned}$$
(A5)
$$\begin{aligned}&\beta ^\star _{hkl}=\frac{\Delta 2 \theta _{hkl}\cos \theta _{hkl}}{\lambda } \end{aligned}$$
(A6)

Combining the above relations leads to the following equation:

$$\begin{aligned} \left( \frac{\Delta d_{hkl}}{d_{hkl}} \right) ^2= \frac{\beta ^{\star ^2}_{hkl}-\beta ^{\star ^2}_{0,hkl}}{d^{\star ^2}_{hkl}} \end{aligned}$$
(A7)

Equation [2], which relates the stored energy density to the reciprocal integral breadth, is obtained by introducing the above expression in Eq. [A3].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mareau, C., Hatte, Q. Evolution of the Stored Energy Density in a X2CrNiMo17-12-2 Austenitic Steel Under Cyclic Loading Conditions. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07369-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07369-w

Navigation