Skip to main content
Log in

Nitrogen-Substituting Carbon Significantly Improves Softening Resistance of H13 Hot-Work Die Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the thermal stability of H13 hot-work tool steel was significantly improved through the use of nitrogen as a substitute for carbon. The results indicated that the 0.3C-0.2N and 0.2C-0.3N steels exhibited better hardness stability than H13 steel (0.4C-0N). In particular, the 0.2C-0.3N steel exhibited substantially improved hardness stability. The softening resistance mechanism was revealed from the perspectives of precipitates, dislocations, laths, and variants through first-principles calculations, thermodynamic and kinetic models, and variant reconstruction. First, for precipitate stability, the results of first-principles calculations and kinetic analysis showed that substituting N with C reduced the formation energy of carbides and facilitated the formation of carbonitrides. For 0.2C-0.3N steel, which had the highest activation energy, both the diffusion of alloying elements and the coarsening of carbonitrides were significantly inhibited. Second, in terms of dislocation evolution, the most stable lattice constant, highest interstitial atom content and lowest carbide precipitation content were the keys to inhibiting dislocation recovery. Finally, the dislocation and heat-induced boundary migration stimulated the selection of variants, resulting in the coarsening and coalescence of laths. The change from V17 to V1 variant pairs was dominant for the lath coalescence of 0.2C-0.3N steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H.N. Ding, X.N. Cheng, T. Liu, F.Y. Cao, L.L. Chen, R. Luo, Y.X. Zhang, and B.S. Zhang: Mater. Sci. Eng. A, 2022, vol. 842, 143102. https://doi.org/10.1016/j.msea.2022.143102.

    Article  CAS  Google Scholar 

  2. H.J. Wang, H.B. Li, H. Feng, W.C. Jiao, H.C. Zhu, S.C. Zhang, and Z.H. Jiang: Mater. Charact., 2023, vol. 203, 113154. https://doi.org/10.1016/j.matchar.2023.113154.

    Article  CAS  Google Scholar 

  3. A. Jilg and T. Seifert: Mater. Sci. Eng. A, 2018, vol. 721, pp. 96–102. https://doi.org/10.1016/j.msea.2018.02.048.

    Article  CAS  Google Scholar 

  4. J. Zhu, G.T. Lin, Z.H. Zhang, and J.X. Xie: Mater. Sci. Eng. A, 2020, vol. 797, 140139. https://doi.org/10.1016/j.msea.2020.140139.

    Article  CAS  Google Scholar 

  5. J. Zhu, Z.H. Zhang, and J.X. Xie: Mater. Sci. Eng. A, 2019, vol. 752, pp. 101–14. https://doi.org/10.1016/j.msea.2019.02.085.

    Article  CAS  Google Scholar 

  6. N.Y. Du, H.W. Liu, P.X. Fu, H.H. Liu, C. Sun, Y.F. Cao, and D.Z. Li: Crystals, 2020, vol. 10, p. 238. https://doi.org/10.3390/cryst10040238.

    Article  CAS  Google Scholar 

  7. G. Krauss: Steel Res. Int., 2017, vol. 88, p. 1700038. https://doi.org/10.1002/srin.201700038.

    Article  CAS  Google Scholar 

  8. S.W. Young, M. Sato, K. Yamamitsu, Y. Shimada, Y.J. Zhang, G. Miyamoto, and T. Furuhara: Acta Mater., 2021, vol. 206, 116612. https://doi.org/10.1016/j.actamat.2020.116612.

    Article  CAS  Google Scholar 

  9. Y.W. Chen, B.M. Huang, Y.T. Tsai, S.P. Tsai, C.Y. Chen, and J.R. Yang: Mater. Charact., 2017, vol. 131, pp. 298–305. https://doi.org/10.1016/j.matchar.2017.07.022.

    Article  CAS  Google Scholar 

  10. J.L. Tian, K. Chen, H.B. Li, and Z.H. Jiang: Mater. Sci. Eng. A, 2022, vol. 833, 142529. https://doi.org/10.1016/j.msea.2021.142529.

    Article  CAS  Google Scholar 

  11. Z.J. Zhang, J.S. Zhang, Z.H. Yao, G.L. Xie, Y. Lian, M.Y. Ma, C. Zhao, and J.F. Huang: Metals, 2019, vol. 9, p. 805. https://doi.org/10.3390/met9070805.

    Article  CAS  Google Scholar 

  12. S. Li, X.C. Wu, S.H. Chen, and J.W. Li: J. Mater. Eng. Perform., 2016, vol. 25, pp. 2993–3006. https://doi.org/10.1007/s11665-016-2124-2.

    Article  CAS  Google Scholar 

  13. R.M. Wu, W. Li, M. Chen, S. Huang, and T. Hu: Mater. Sci. Eng. A, 2021, vol. 812, 141140. https://doi.org/10.1016/j.msea.2021.141140.

    Article  CAS  Google Scholar 

  14. H. Feng, H.B. Li, J. Dai, Y. Han, J.D. Qu, Z.H. Jiang, Y. Zhao, and T. Zhang: Corros. Sci., 2022, vol. 204, 110396. https://doi.org/10.1016/j.corsci.2022.110396.

    Article  CAS  Google Scholar 

  15. H. Feng, H.B. Li, W.C. Jiao, Z.H. Jiang, M.H. Cai, H.C. Zhu, and Z.G. Chen: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 4987–99. https://doi.org/10.1007/s11661-019-05398-4.

    Article  CAS  Google Scholar 

  16. H.B. Li, Y. Han, H. Feng, G. Zhou, Z.H. Jiang, M.H. Cai, Y.Z. Li, and M.X. Huang: J. Mater. Sci. Technol., 2023, vol. 141, pp. 184–92. https://doi.org/10.1016/j.jmst.2022.09.020.

    Article  CAS  Google Scholar 

  17. J.B. Gu, J.Y. Li, J. Yanagimoto, W. Li, and L.H. Li: Mater. Sci. Eng. A, 2021, vol. 804, 140721. https://doi.org/10.1016/j.msea.2020.140721.

    Article  CAS  Google Scholar 

  18. J.B. Gu, H.Q. Liu, J.Y. Li, Y.B. Jiang, and R.J. Chang: J. Iron. Steel Res. Int., 2019, vol. 26, pp. 483–89. https://doi.org/10.1007/s42243-018-0164-6.

    Article  CAS  Google Scholar 

  19. N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag: Acta Mater., 2005, vol. 53, pp. 5439–47. https://doi.org/10.1016/j.actamat.2005.08.017.

    Article  CAS  Google Scholar 

  20. M. Karam Abian, A. Zarei Hanzaki, H.R. Abedi, and S. Heshmati Manesh: Mater. Sci. Eng. A, 2016, vol. 651, pp. 233–40. https://doi.org/10.1016/j.msea.2015.10.116.

    Article  CAS  Google Scholar 

  21. F. Niessen, T. Nyyssonen, A.A. Gazder, and R. Hielscher: J. Appl. Crystallogr., 2022, vol. 55, pp. 180–94. https://doi.org/10.1107/S1600576721011560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hongzhiwei Technology, Device Studio, version 2021A. 2021. Accessed on 2020.10. https://iresearch.net.cn/cloudSoftware.

  23. P.E. Blöchl: Phys. Rev. B, 1994, vol. 50, p. 17953. https://doi.org/10.1103/PhysRevB.50.17953.

    Article  Google Scholar 

  24. Z. Zhang, D. Delagnes, and G. Bernhart: Mater. Sci. Eng. A, 2004, vol. 380, pp. 222–30. https://doi.org/10.1016/j.msea.2004.03.067.

    Article  CAS  Google Scholar 

  25. E. Virtanen, C.J. Van Tyne, B.S. Levy, and G. Brada: J. Mater. Process. Technol., 2013, vol. 213, pp. 1364–69. https://doi.org/10.1016/j.jmatprotec.2013.03.003.

    Article  CAS  Google Scholar 

  26. R. Gecu: Mater. Chem. Phys., 2022, vol. 292, 126802. https://doi.org/10.1016/j.matchemphys.2022.126802.

    Article  CAS  Google Scholar 

  27. C.S. Li, Y.H. Han, E. Li, S. He, and J.Y. Ren: J. Mater. Eng. Perform., 2022, vol. 31, pp. 4983–97. https://doi.org/10.1007/s11665-021-06303-0.

    Article  CAS  Google Scholar 

  28. A.G. Ning, Y. Liu, R. Gao, S. Yue, M.B. Wang, and H.J. Guo: JOM, 2021, vol. 73, pp. 2194–2202. https://doi.org/10.1007/s11837-021-04694-y.

    Article  CAS  Google Scholar 

  29. J.B. Gu, J.Y. Li, and J.H. Huo: Steel Res. Int., 2017, vol. 88, p. 1700031. https://doi.org/10.1002/srin.201700031.

    Article  CAS  Google Scholar 

  30. X.G. Zhang, K. Matsuura, and M. Ohno: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4623–34. https://doi.org/10.1007/s11661-014-2364-4.

    Article  CAS  Google Scholar 

  31. C. Zhang, Y.Q. Cao, J.Y. Chen, H.Y. Ye, C. Zhao, and J.F. Huang: Steel Res. Int., 2023, vol. 94, p. 2200811. https://doi.org/10.1002/srin.202200811.

    Article  CAS  Google Scholar 

  32. Q.C. Zhou, X.C. Wu, N.N. Shi, J.W. Li, and N. Min: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5696–5700. https://doi.org/10.1016/j.msea.2011.04.024.

    Article  CAS  Google Scholar 

  33. N. Sargent, Y.K. Wang, D.Z. Li, Y.H. Zhao, X. Wang, and W. Xiong: Addit. Manuf. Lett., 2023, vol. 6, 100133. https://doi.org/10.1016/j.addlet.2023.100133.

    Article  Google Scholar 

  34. H.N. Ding, T. Liu, J.B. Wei, L. Chen, F.Y. Cao, B.S. Zhang, R. Luo, and X.N. Cheng: Mater. Design, 2022, vol. 224, 111317. https://doi.org/10.1016/j.matdes.2022.111317.

    Article  CAS  Google Scholar 

  35. J.H. Jang, C.H. Lee, Y.U. Heo, and D.W. Suh: Acta Mater., 2012, vol. 60, pp. 208–17. https://doi.org/10.1016/j.actamat.2011.09.051.

    Article  CAS  Google Scholar 

  36. P.H. Yang, H.G. Fu, X.Y. Guo, B. Rachid, and J. Lin: J. Mater. Res. Technol., 2020, vol. 9, pp. 3109–20. https://doi.org/10.1016/j.jmrt.2020.01.056.

    Article  CAS  Google Scholar 

  37. Y.L. Wang, K.X. Song, and Y.M. Zhang: Mater. Res. Express, 2019, vol. 6, 096513. https://doi.org/10.1088/2053-1591/ab2bb9.

    Article  CAS  Google Scholar 

  38. J.Y. Li, Y.L. Chen, and J.H. Huo: Mater. Sci. Eng. A, 2015, vol. 640, pp. 16–23. https://doi.org/10.1016/j.msea.2015.05.006.

    Article  CAS  Google Scholar 

  39. S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen: Acta Mater., 2006, vol. 54, pp. 5323–31. https://doi.org/10.1016/j.actamat.2006.07.009.

    Article  CAS  Google Scholar 

  40. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789–99. https://doi.org/10.1016/S1359-6454(02)00577-3.

    Article  CAS  Google Scholar 

  41. G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara: Acta Mater., 2010, vol. 58, pp. 6393–6403. https://doi.org/10.1016/j.actamat.2010.08.001.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the National Natural Science Foundation of China [Grant Nos. 52374331, 52325406 and U1960203], Science Fund for Distinguished Young Scholars of Liaoning Province [Grant No. 2023JH6/100500008], and Program of Introducing Talents of Discipline to Universities [Grant No. B21001]. Special thanks are due to the instrumental analysis from Analytical and Testing Centre, Northeastern University. The authors gratefully acknowledge HZWTECH for providing computation facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Feng or Gang Zhou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HJ., Feng, H., Li, HB. et al. Nitrogen-Substituting Carbon Significantly Improves Softening Resistance of H13 Hot-Work Die Steel. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07367-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07367-y

Navigation