Skip to main content
Log in

The Influence of δ-Phase on the Environmentally Assisted Cracking Resistance of an Additively Manufactured Nickel-Based Superalloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

IN625 is an attractive alloy for additive manufacturing (AM) applications, but the processing conditions in AM generate considerable residual stresses, compositional gradients, and microstructural heterogeneities that degrade properties and performance. Resistance to environmentally induced cracking is of great concern for many applications within the petroleum and natural gas (PNG) industries. To evaluate the influence that AM fabrication may have on this property, AM and wrought-processed samples were given similar heat treatments and tested in tension at slow strain rates in an acidified chloride environment under both freely corroding conditions and controlled hydrogen fugacity. The results revealed that the AM solidification microstructure had a deleterious influence on the mechanical properties and significantly increased the severity of the cracking when absorbed hydrogen was present in the sample. An increase in the volume fraction of the δ-phase intensified the strength of that influence. This evaluation also demonstrated that additional thermal processing eliminated the AM solidification microstructure and the microsegregation resulting in a more homogeneous microstructure, which reduced the density and severity of the interactions between the absorbed hydrogen, interfacial precipitates (δ-phase), grain boundaries, and tri-axial stresses. It is concluded that effective post-build heat treatments can be designed that will enable AM components to perform as well as wrought components under the same environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement of any product or service by NIST, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

  2. In contrast to the more common “skin and core” pattern where the laser traces the perimeter multiple times before and after the completion of each build layer, the “all-core” pattern used did not retrace the perimeter between layers thereby producing more consistent microstructures throughout the build.

References

  1. S.S. Babu, L. Love, R. Dehoff, W. Peter, T.R. Watkins, and S. Pannala: MRS Bull., 2015, vol. 40, pp. 1154–61.

    Article  Google Scholar 

  2. W.E. Frazier: J. Mater. Eng. Perform., 2014, vol. 23, pp. 1917–28.

    Article  CAS  Google Scholar 

  3. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe: Int. Mater. Revs., 2013, vol. 57, pp. 133–64.

    Article  Google Scholar 

  4. G.K. Dey, S. Albert, D. Srivastava, M. Sundararaman, and P. Mukhopadhyay: Mater. Sci. Engr. A, 1989, vol. 119, pp. 175–84.

    Article  Google Scholar 

  5. G.P. Dinda, A.K. Dasgupta, and J. Mazumder: Mater. Sci. Engr. A, 2009, vol. 509, pp. 98–104.

    Article  Google Scholar 

  6. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–24.

    Article  CAS  Google Scholar 

  7. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu: Int. Mater. Revs., 2016, vol. 61, pp. 315–60.

    Article  CAS  Google Scholar 

  8. M.J. Cieslak, T.J. Headley, A.D. Romig, and T. Kollie: Metall. Trans. A, 1988, vol. 19, pp. 2319–31.

    Article  Google Scholar 

  9. M.R. Stoudt, E.A. Lass, D.S. Ng, M.E. Williams, F. Zhang, C.E. Campbell, G. Lindwall, and L.E. Levine: Metall. Mater. Trans. A, 2018, vol. 49, pp. 3028–37.

    Article  CAS  Google Scholar 

  10. F. Zhang, L.E. Levine, A.J. Allen, M.R. Stoudt, G. Lindwall, E.A. Lass, M.E. Williams, Y. Idell, and C.E. Campbell: Acta Mater., 2018, vol. 152, pp. 200–14.

    Article  CAS  Google Scholar 

  11. E.A. Lass, M.R. Stoudt, M.B. Katz, and M.E. Williams: Scripta Mater., 2018, vol. 154, pp. 83–86.

    Article  CAS  Google Scholar 

  12. L. Suave, J. Cormier, P. Villechaise, A. Soula, Z. Hervier, D. Bertheau, and J. Laigo: Metall. Mater. Trans. A, 2014, vol. 45, pp. 2963–82.

    Article  CAS  Google Scholar 

  13. P. Petrzak, K. Kowalski, and M. Blicharski: Acta Phys. Pol. A, 2016, vol. 130, pp. 1041–44.

    Article  CAS  Google Scholar 

  14. M. Sundararaman, L. Kumar, G.E. Prasad, P. Mukhopadhyay, and S. Banerjee: Metall. Mater. Trans. A, 1999, vol. 30, pp. 41–52.

    Article  Google Scholar 

  15. F. Cortial, J.M. Corrieu, and C. Vernot-Loier: Metall. Mater. Trans. A, 1995, vol. 26, pp. 1273–86.

    Article  Google Scholar 

  16. X. Xing, X. Di, and B. Wang: J. Alloys Compd., 2014, vol. 593, pp. 110–16.

    Article  CAS  Google Scholar 

  17. A. Sukumaran, R.K. Gupta, and V.A. Kumar: J. Mater. Eng. Perform., 2017, vol. 26, pp. 3048–57.

    Article  CAS  Google Scholar 

  18. X. Liu, J. Fan, P. Zhang, K. Cao, Z. Wang, F. Chen, D. Liu, B. Tang, H. Kou, and J. Li: J. Alloys Compd., 2023, vol. 930, 167522.

    Article  CAS  Google Scholar 

  19. F. Zhang, L.E. Levine, A.J. Allen, C.E. Campbell, E.A. Lass, S. Cheruvathur, M.R. Stoudt, M.E. Williams, and Y. Idell: Scripta Mater., 2017, vol. 131, pp. 98–102.

    Article  CAS  Google Scholar 

  20. T. Keller, G. Lindwall, S. Ghosh, L. Ma, B.M. Lane, F. Zhang, U.R. Kattner, E.A. Lass, J.C. Heigel, Y. Idell, M.E. Williams, A.J. Allen, J.E. Guyer, and L.E. Levine: Acta Mater., 2017, vol. 139, pp. 244–53.

    Article  CAS  Google Scholar 

  21. S. Ghosh, M.R. Stoudt, L.E. Levine, and J.E. Guyer: Scripta Mater., 2018, vol. 146, pp. 36–40.

    Article  CAS  Google Scholar 

  22. E.A. Lass, M.R. Stoudt, M.E. Williams, M.B. Katz, L.E. Levine, T.Q. Phan, T.H. Gnaeupel-Herold, and D.S. Ng: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5547–58.

    Article  CAS  Google Scholar 

  23. J. Mittra, S. Banerjee, R. Tewari, and G.K. Dey: Mater. Sci. Eng. A, 2013, vol. 574, pp. 86–93.

    Article  CAS  Google Scholar 

  24. V. Shankar, K.B.S. Rao, and S.L. Mannan: J. Nucl. Mater., 2001, vol. 288, pp. 222–32.

    Article  CAS  Google Scholar 

  25. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Metall. Trans. A, 1988, vol. 19, pp. 453–65.

    Article  Google Scholar 

  26. C.U. Brown, G. Jacob, M. Stoudt, S. Moylan, J. Slotwinski, and A. Donmez: J. Mater. Eng. Perform., 2016, vol. 25, pp. 3390–97.

    Article  CAS  Google Scholar 

  27. S. Ghosh, L. Ma, L.E. Levine, R.E. Ricker, M.R. Stoudt, J.C. Heigel, and J.E. Guyer: JOM, 2018, vol. 70, pp. 1011–16.

    Article  CAS  Google Scholar 

  28. ASTM, (ASTM International: West Conshohocken, PA, 2013).

  29. G. Lindwall, C.E. Campbell, E.A. Lass, F. Zhang, M.R. Stoudt, A.J. Allen, and L.E. Levine: Metall. Mater. Trans. A, 2018, vol. 14, pp. 457–67.

    Google Scholar 

  30. F. Zhang and M. R. Stoudt, Unpublished research, 2020.

  31. G. F. VanderVoort: Metallography Principles and Practice. (ASM International, Materials Park, OH, 1999).

  32. ASTM, (ASTM International: West Conshohocken, PA, 2021).

  33. R.N. Iyer, H.W. Pickering, and M. Zamanzadeh: J. Electrochem. Soc., 1989, vol. 136, p. 2463.

    Article  CAS  Google Scholar 

  34. D.A. Jones: Principles and Prevention of Corrosion, Macmillan Publishing Co, New York, 1992.

    Google Scholar 

  35. W.M. Robertson: Z. Metallkd., 1973, vol. 64, pp. 436–43.

    CAS  Google Scholar 

  36. A. Turnbull, R.G. Ballinger, I.S. Hwang, M.M. Morra, M. Psaila-Dombrowski, and R.M. Gates: Metall. Trans. A, 1992, vol. 23, pp. 3231–44.

    Article  Google Scholar 

  37. G. Alefeld and J. Völkl: Hydrogen in Metals, Springer, New York, 1978.

    Book  Google Scholar 

  38. Anon., (Thermo-Calc Software AB: Stockholm, Sweden, 2022).

  39. Anon., (Themo-Calc Software AB: Stockholm, Sweden, 2021).

  40. A.S. Wilson: Mater. Sci. Tech., 2017, vol. 33, pp. 1108–18.

    Article  CAS  Google Scholar 

  41. J. Billingham and J. Lauridsen: Metallography, 1973, vol. 6, pp. 85–90.

    Article  CAS  Google Scholar 

  42. J. S. Zuback and T. A. Palmer, Submitted for publication in Journal of Alloys and Compounds.

  43. S. Floreen, G. E. Fuchs and W. J. Yang, In Superalloys 718, 625, 706 and Various Derivatives, ed. E. A. Loria (TMS: Warrendale, PA, 1994), pp 13–37.

  44. A.A.A.P. da Silva, A. Couto, and R. Baldan: Mater. Res., 2020, vol. 23, p. 20190546.

    Article  Google Scholar 

  45. E. Chlebus, K. Gruber, B. Kuźnicka, J. Kurzac, and T. Kurzynowski: Mater. Sci. Eng. A, 2015, vol. 639, pp. 647–55.

    Article  CAS  Google Scholar 

  46. B. Lane, J. Heigel, R. Ricker, I. Zhirnov, V. Khromschenko, J. Weaver, T. Phan, M. Stoudt, S. Mekhontsev, and L. Levine: Integr. Mater. Manuf. Innov., 2020, vol. 9, pp. 16–30.

    Article  Google Scholar 

  47. D.F. Martelo, R. Morana, and R. Akid: Theoret. Appl. Fract. Mech., 2021, vol. 112, 102871.

    Article  CAS  Google Scholar 

  48. M.P. LaCoursiere, D.K. Aidun, and D.J. Morrison: J. Mater. Eng. Perform., 2017, vol. 26, pp. 2337–45.

    Article  CAS  Google Scholar 

  49. Z. Zhang, G. Obasi, R. Morana, and M. Preuss: Acta Mater., 2016, vol. 113, pp. 272–83.

    Article  CAS  Google Scholar 

  50. P.D. Hicks and C.J. Altstetter: Metall. Trans. A, 1992, vol. 23, pp. 237–49.

    Article  Google Scholar 

  51. Anon.: API Standard 6ACRA: Age-Hardened Nickel-Based Alloys for Oil and Gas Drilling and Production Equipment. (American Petroleum Institute, NW Washington DC, 2019).

  52. M.J. Benoit, M. Mazur, M.A. Easton, and M. Brandt: Int. J. Adv. Manuf. Tech., 2021, vol. 114, pp. 915–27.

    Article  Google Scholar 

  53. K. Inaekyan, A. Kreitcberg, S. Turenne, and V. Brailovski: Mater. Sci. Eng. A, 2019, vol. 768, p. 13.

    Article  Google Scholar 

  54. Z. Zhang, K.L. Moore, G. McMahon, R. Morana, and M. Preuss: Corros. Sci., 2019, vol. 146, pp. 58–69.

    Article  CAS  Google Scholar 

  55. A. Kreitcberg, V. Brailovski, and S. Turenne: Mater. Sci. Eng. A, 2017, vol. 689, pp. 1–10.

    Article  CAS  Google Scholar 

  56. G. Marchese, M. Lorusso, S. Parizia, E. Bassini, J.-W. Lee, F. Calignano, D. Manfredi, M. Terner, H.-U. Hong, D. Ugues, M. Lombardi, and S. Biamino: Mater. Sci. Eng. A, 2018, vol. 729, pp. 64–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the NIST Engineering Laboratory for supplying the material used in this study. The authors would also like to thank M. Ahlfors and C. Beamer of Quintus Technologies for designing and performing the HIP heat treatment used in this research, J.S. Zuback and A.D. Iams of the NIST Materials Measurement Laboratory for their help with the phase analyses, and S.A. Young, also of the NIST Materials Measurement Laboratory, for her invaluable assistance in the preparation of the tensile specimens and metallography.

Conflict of interest

The authors declare that the research presented in this document was internally funded by the National Institute of Standards and Technology and that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Stoudt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoudt, M.R., Ricker, R.E. The Influence of δ-Phase on the Environmentally Assisted Cracking Resistance of an Additively Manufactured Nickel-Based Superalloy. Metall Mater Trans A 55, 335–351 (2024). https://doi.org/10.1007/s11661-023-07252-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07252-0

Navigation