Skip to main content
Log in

Effect of Solutionizing Heat Treatment on Microstructure and Mechanical Behavior of Additively Manufactured Medium Gamma Prime Nickel Superalloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) of γ′-strengthened Ni-based superalloys is appealing for use in fabrication of high-temperature structural components. As AM produces unique microstructures and mechanical behaviors, a better understanding of microstructure development during post-printing heat treatment is important. An extensive set of experimental data of Rene65 printed by powder bed fusion-laser beam is reported. Effects of heat treatment on microstructure are characterized by scanning electron microscopy and electron-backscattered diffraction. Elevated temperature tensile testing, tension creep, and compression creep are conducted with samples loaded parallel and transverse to the build direction. Recrystallization occurs, resulting in an equiaxed grain structure, only with supersolvus heat treatments. There is no effect of supersolvus hold time on grain growth, a behavior different from that of wrought Rene65. Subsolvus heat treatments result in a coarse bimodal precipitate structure, while rapid cooling from supersolvus results in a fine homogenous structure. Comparable tensile behavior is seen regardless of heat treatment, apart from differences in elongation to failure due to loading direction. Creep behavior is improved with supersolvus heat treatment, although increased hold time has a detrimental effect. Based on the experimental results, the relation of microstructures to mechanical behaviors for additively manufactured Rene65 is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. C.M. Katsari, S. Katnagallu, and S. Yue: Mater. Charact., 2020, vol. 169, p. 110542.

    Article  CAS  Google Scholar 

  2. J. Heaney, M. Lasonde, A. Powell, B. Bond, and C. O’Brien: 8th International Symposium on Superalloy 718 and Derivatives, 2014, pp. 67–77.

  3. ISO/ASTM: 52900:2021 €.

  4. M. Cheng, X. Xiao, G. Luo, and L. Song: Opt. Laser Technol., 2021, vol. 142, p. 107137.

    Article  CAS  Google Scholar 

  5. H.E. Sabzi, N.T. Aboulkhair, X. Liang, X.H. Li, M. Simonelli, H. Fu, and P.E.J. Rivera-Diaz-del-Castillo: Mater. Des., 2020, vol. 196, 109181.

    Article  CAS  Google Scholar 

  6. S.H. Sun, K. Hagihara, and T. Nakano: Mater. Des., 2018, vol. 140, pp. 307–16.

    Article  CAS  Google Scholar 

  7. T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun, and T. Nakano: Scripta Mater., 2017, vol. 132, pp. 34–8.

    Article  CAS  Google Scholar 

  8. P. Karimi, E. Sadeghi, J. Algardh, A. Kedhavarzkermani, R. Esmaeilizadeh, E. Toyserkani, and J. Andersson: Addit. Manuf., 2021, vol. 46, 102086.

    CAS  Google Scholar 

  9. E. Hosseini and V.A. Popovich: Addit. Manuf., 2019, vol. 30, 100877.

    CAS  Google Scholar 

  10. Y.L. Kuo, S. Horikawa, and K. Kakehi: Scripta Mater., 2017, vol. 129, pp. 74–8.

    Article  CAS  Google Scholar 

  11. Y.L. Kuo, A. Kamigaichi, and K. Kakehi: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3831–837.

    Article  Google Scholar 

  12. T.D. McLouth, D.B. Witkin, G.E. Bean, S.D. Sitzman, P.M. Adams, J.R. Lohser, J.M. Yang, and R.J. Zaldivar: Mater. Sci. Eng. A, 2020, vol. 780, p. 139184.

    Article  CAS  Google Scholar 

  13. A.C. Hautfenne, S. Nardone, E. de Bruycker, and C. Hautfenne: 4th international ECCC conference, 2017, p. 321267580.

  14. S. Pratheesh Kumar, S. Elangovan, R. Mohanraj, and J.R. Ramakrishna: Mater. Today Proc., 2021, vol. 46, pp. 7892–906.

    Article  CAS  Google Scholar 

  15. M. Probstle, S. Neumeier, J. Hopfenmuller, L.P. Freund, T. Niendorf, D. Schwarze, and M. Goken: Mater. Sci. Eng., A, 2016, vol. 674, pp. 299–307.

    Article  Google Scholar 

  16. B. Rogers, A. Tasooji, B. Rogers, and W. Petuskey: thesis presentation, Arizona State University, 2017.

  17. B. Shassere, D. Greeley, A. Okello, M. Kirka, P. Nandwana, and R. Dehoff: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 5107–117.

    Article  Google Scholar 

  18. L.Y. Wang, Y.C. Wang, Z.J. Zhou, H.Y. Wan, C.P. Li, G.F. Chen, and G.P. Zhang: Mater. Des., 2020, vol. 195, p. 109042.

    Article  CAS  Google Scholar 

  19. D.B. Witkin, R.W. Hayes, T.D. McLouth, and G.E. Bean: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 3458–465.

    Article  Google Scholar 

  20. Z. Xu, C.J. Hyde, A. Thompson, R.K. Leach, I. Maskery, C. Tuck, and A.T. Clare: Mater. Des., 2017, vol. 133, pp. 520–27.

    Article  CAS  Google Scholar 

  21. Z. Xu, C.J. Hyde, C. Tuck, and A.T. Clare: J. Mater. Process. Technol., 2018, vol. 256, pp. 13–24.

    Article  CAS  Google Scholar 

  22. Z. Xu, J.W. Murray, C.J. Hyde, and A.T. Clare: Addit. Manuf., 2018, vol. 24, pp. 486–97.

    CAS  Google Scholar 

  23. A. Kreitcberg, K. Inaekyan, S. Turenne, and V. Brailovski: J. Manufact. Mater. Process., 2019, vol. 3, p. 75.

    CAS  Google Scholar 

  24. K.T. Son, T.Q. Phan, L.E. Levine, K.S. Kim, K.A. Lee, M. Ahlfors, and M.E. Kassner: Materialia, 2021, vol. 12, p. 101021.

    Article  Google Scholar 

  25. P. Fernandez-Zelaia, Y. Lee, S. Dryepondt, and M.M. Kirka: Int. J. Plast, 2022, vol. 151, p. 103177.

    Article  CAS  Google Scholar 

  26. J. Xu, H. Gruber, D. Deng, R.L. Peng, and J.J. Moverare: Acta Mater., 2019, vol. 179, pp. 142–57.

    Article  CAS  Google Scholar 

  27. A. Wessman, Dissertation, University of Cincinnati, 2016.

  28. N.S. Moghaddam, S. Saedi, A. Amerinatanzi, A. Hinojos, A. Ramanzi, J. Kundin, M.J. Mills, H. Karaca, M. Elahinia: Nat. Sci. Rep., 2019, vol 9(41), 30631084.

  29. S. Lampman: Weld Integrity and Performance, Materials Park, OH, ASM International, 1997, pp. 3–5.

    Book  Google Scholar 

  30. M. Haines, V.V. Rielli, S. Primig, and N. Haghdadi: J. Mater. Sci., 2022, vol. 57, pp. 14135–4187.

    Article  CAS  Google Scholar 

  31. I. Gutierrez-Urrutia, F. Archie, D. Raabe, F. Yan, N. Tao, and K. Lu: Sci. Technol. Adv. Mater., 2016, vol. 17(1), pp. 29–36.

    Article  CAS  Google Scholar 

  32. S.L. Semiatin, D.W. Mahaffey, N.C. Levkulich, O.N. Senkov, and J.S. Tiley: Metall. Mater. Trans. A, 2018, vol. 48A, pp. 6265–276.

    Article  Google Scholar 

  33. T. Grosdidier, A. Hazotte, and A. Simon: Scr. Metall. Mater., 1994, vol. 30, pp. 1257–262.

    Article  CAS  Google Scholar 

  34. C.M. Katsari: thesis presentation, Mcgill University, 2021.

  35. G. Muralidharan and H. Chen: Sci. Technol. Adv. Mater., 2000, vol. 1, pp. 51–62.

    Article  CAS  Google Scholar 

  36. C. Papadaki, W. Li, and A.M. Korsunsky: Materials, 2018, vol. 11, p. 1528.

    Article  Google Scholar 

  37. M. Yang, L. Wang, and W. Yan: NPJ Comput. Mater., 2021, vol. 7, p. 56.

    Article  Google Scholar 

  38. N. Sargent, M. Jones, R. Otis, A.A. Shapiro, J.P. Delplanque, and W. Xiong: Metals, 2021, vol. 11(4), p. 570.

  39. H. Liu, Z. Cheng, W. Yu, and Q. Cai: Materials Research Express, 2021, vol. 8, p. 046539.

    Article  CAS  Google Scholar 

  40. N. Mavrikakis, P.R. Calvillo, W. Saikaly, M. Descoins, D. Mangelinck, M. Dumont: IOP Conf. Series: Materials Science and Engineering, 2018, p. 012016.

  41. C. Slater, A. Mandal, and C. Davis: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1627–636.

    Article  Google Scholar 

  42. Y. Cao, P. Bai, F. Liu, X. Hou, and Y. Guo: Materials, 2020, vol. 13, p. 340.

    Article  CAS  Google Scholar 

  43. K. Alvarado, I. Janeiro, S. Florez, B. Flipon, J.M. Frachet, D. Locq, C. Dumont, N. Bozzolo, and M. Bernacki: Metals, 2021, vol. 11, p. 1921.

    Article  CAS  Google Scholar 

  44. M.A. Charpagne, Unpublished Work, University of Illinois, 2021.

  45. F. Yan, W. Xiong, E. Faierson, and G.B. Olson: Scripta Mater., 2018, vol. 155, pp. 104–08.

    Article  CAS  Google Scholar 

  46. E.I. Galindo-Nava, L.D. Connor, and C.M.F. Rae: Acta Mater., 2015, vol. 98, pp. 377–90.

    Article  CAS  Google Scholar 

  47. G. Malakondaiah and P.R. Rao: Def Sci J, 1985, vol. 35, pp. 201–17.

    Article  CAS  Google Scholar 

  48. H. Zhang, Z. Xu, L.J. Kecskes, S. Yarmolenko, and J. Sankar: Crystals, 2021, vol. 11(10), p. 1128.

  49. R. Raj and M.F. Ashby: Metallurgical Transactions, 1971, vol. 2, pp. 1113–127.

    Article  Google Scholar 

  50. M.A. Ali, I. Lopez-Galilea, S. Gao, B. Ruttert, W. Amin, O. Shchyglo, A. Hartmaier, W. Theisen, and I. Steinbach: Materialia, 2020, vol. 12, p. 100692.

    Article  CAS  Google Scholar 

  51. D. Seidman, E. Marquis, and D. Dunand: Acta Mater., 2002, vol. 50, pp. 4021–035.

    Article  CAS  Google Scholar 

  52. T. Gallmeyer, S. Moorthy, B. Kappes, M. Mills, B. Amin-Ahmadi, and A. Stebner: Addit. Manuf., 2020, vol. 31, p. 100977.

    CAS  Google Scholar 

  53. X. Zhang, H. Cao, X. Yang, Y. Zhao, H. Wang, X. Mao, and Y. Zhai: Fusion Eng. Des., 2021, vol. 164, p. 112213.

    Article  CAS  Google Scholar 

  54. O. Adegoke, J. Andersson, H. Brodin, R. Pederson: Metals, 2022, vol. 10(8), p. 996.

  55. J. Campbell: Complete Casting, 2nd ed. Butterworth-Heinemann, Oxford, UK, 2015, pp. 821–82.

    Book  Google Scholar 

  56. T. Wojcik, M. Rath, and E. Kozeschnik: Mater. Technol., 2018, vol. 24(13), pp. 1558–564.

    Article  Google Scholar 

  57. X.L. He, Y.Y. Chu, and J.J. Jonas: Acta Metall., 1989, vol. 37(11), pp. 2905–916.

    Article  CAS  Google Scholar 

  58. G.P. Tilly and G.F. Harrison: J. Strain Anal., 1972, vol. 7(3), pp. 163–69.

    Article  Google Scholar 

  59. H. Wang, Q.D. Wang, C.J. Boehlert, D.D. Yin, and J. Yuan: Mater. Charact., 2015, vol. 99, pp. 25–37.

    Article  Google Scholar 

  60. K. Kakehi: Scripta Mater., 1999, vol. 41, pp. 461–65.

    Article  CAS  Google Scholar 

  61. N. Tsuno, S. Shimabayashi, K. Kakehi, C.M.F. Rae, and R.C. Reed: 11th International Symposium on Superalloys, TMS, 2008, pp. 433–442.

  62. P. Deng, M. Song, J. Yang, Q. Pan, S. McAllister, L. Li, B. Prorok, and X. Lou: Mater. Sci. Eng. A, 2022, vol. 835, p. 142690.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support from the U.S. National Science Foundation NSF I/UCRC Manufacturing and Materials Joining Innovation Center (Ma2JIC) under Grant No. 1822144.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Mills.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilla, C., Wessman, A., Aman, R. et al. Effect of Solutionizing Heat Treatment on Microstructure and Mechanical Behavior of Additively Manufactured Medium Gamma Prime Nickel Superalloy. Metall Mater Trans A 54, 2470–2485 (2023). https://doi.org/10.1007/s11661-023-07035-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07035-7

Navigation