Skip to main content
Log in

High Strain Rate Superplastic Flow and Fracture Characteristics of a Fine-Grained Eutectic High Entropy Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A fine-grained micro-duplex AlCoCrFeNi2.1 eutectic high entropy alloy exhibited high strain rate superplasticity with an elongation to failure of ~ 960 pct at 1173 K and a strain rate of 10-1 s-1. Optimum superplasticity was associated with a strain rate sensitivity of ~ 0.5, and there were transitions to non-superplastic flow with strain rate sensitivities of < 0.5 at both low and high strain rates. Superplasticity is attributed to grain boundary sliding with the observed retention of an equiaxed grain morphology, with some grain growth. Cavities with dimensions in the range of 1 to 5 μm were observed in specimens pulled to failure. Although analysis revealed that cavity nucleation is likely under the experimental conditions, cavity growth was slow because of control by a plasticity growth rate that was proportional to the cavity size.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6(5), pp. 299–303.

    Article  CAS  Google Scholar 

  2. J.W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau, and S.Y. Chou: Metall. Mater. Trans. A, 2004, vol. 35(8), pp. 2533–36.

    Article  Google Scholar 

  3. J.W. Yeh: Ann. Chim. Sci. Mater., 2006, vol. 31(6), pp. 633–48.

    Article  CAS  Google Scholar 

  4. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Mater. Sci. Eng. A, 2004, vol. 375–377, pp. 213–18.

    Article  Google Scholar 

  5. B.S. Murty, J.W. Yeh, and S. Ranganathan: High-Entropy Alloys, Ist Butterworth-Heinemann, London, UK, 2014.

    Google Scholar 

  6. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Prog. Mater. Sci., 2004, vol. 61, pp. 1–93.

    Article  Google Scholar 

  7. D.B. Miracle and O.N. Senkov: Acta Mater., 2017, vol. 122, pp. 448–511.

    Article  CAS  Google Scholar 

  8. Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, and T. Li: Sci. Rep., 2014, vol. 4, p. 6200.

    Article  CAS  Google Scholar 

  9. Z. Ding, Q. He, and Y. Yang: Sci. China Technol. Sci., 2018, vol. 61, pp. 159–67.

    Article  Google Scholar 

  10. I.S. Wani, T. Bhattacharjee, S. Sheikh, Y.P. Lu, S. Chatterjee, P.P. Bhattacharjee, S. Guo, and N. Tsuji: Mater. Res. Lett., 2016, vol. 4(3), pp. 174–79.

    Article  CAS  Google Scholar 

  11. I.S. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee, S. Guo, and N. Tsuji: Mater. Sci. Eng. A, 2016, vol. 675(Supplement C), pp. 99–109.

    Article  CAS  Google Scholar 

  12. T. Bhattacharjee, R. Zheng, Y. Chong, S. Sheikh, S. Guo, I.T. Clark, T. Okawa, I.S. Wani, P.P. Bhattacharjee, A. Shibata, and N. Tsuji: Mater. Chem. Phys., 2017, vol. 210, pp. 207–12.

    Article  Google Scholar 

  13. T. Bhattacharjee, I.S. Wani, S. Sheikh, I.T. Clark, T. Okawa, S. Guo, P.P. Bhattacharjee, N. Tsuji: Sci. Rep. 2018, vol. 8(1), p. 3276.

  14. Y. Zhang, X. Wang, J. Li, Y. Huang, Y. Lu, and X. Sun: Mater. Sci. Eng. A, 2018, vol. 724, pp. 148–55.

    Article  CAS  Google Scholar 

  15. M. Rahul, S. Samal, S. Venugopal, and G. Phanikumar: J. Alloys Compd., 2018, vol. 749, pp. 1115–27.

    Article  CAS  Google Scholar 

  16. A.H. Chokshi, A.K. Mukherjee, and T.G. Langdon: Mater. Sci. Eng. R, 1993, vol. 10(6), pp. 237–74.

    Article  CAS  Google Scholar 

  17. R. Gifkins and T. Langdon: Mater. Sci. Eng., 1978, vol. 36(1), pp. 27–33.

    Article  CAS  Google Scholar 

  18. A.K. Mukherjee: Superplasticity in Metals, Ist ed., Ceramics and Intermetallics, Germany: VCH Verlagsges, Weinheim, Germany, 2016.

  19. K.A. Padmanabhan, G.J. Davies: Superplasticity: mechanical and structural aspects, environmental effects, fundamentals and applications, Springer Science & Business Media, Berlin, Germany, 2012.

  20. K. Higashi, M. Mabuchi, and T.G. Langdon: ISIJ Int., 1996, vol. 36(12), pp. 1423–38.

    Article  CAS  Google Scholar 

  21. A.H. Chokshi: Mater. Chem. Phys., 2018, vol. 210, pp. 152–61.

    Article  CAS  Google Scholar 

  22. H. Shahmir, J. He, Z. Lu, M. Kawasaki, and T.G. Langdon: Mater. Sci. Eng. A, 2017, vol. 685, pp. 342–48.

    Article  CAS  Google Scholar 

  23. S.R. Reddy, S. Bapari, P.P. Bhattacharjee, and A.H. Chokshi: Mater. Res. Lett., 2017, vol. 5(6), pp. 408–14.

    Article  CAS  Google Scholar 

  24. A.V. Kuznetsov, D.G. Shaisultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov: Mater. Sci. Forum, Trans. Tech. Publ., 2013, pp. 146–51.

  25. H. Shahmir, M. Nili-Ahmadabadi, A. Shafiee, and T.G. Langdon: Mater. Sci. Eng. A, 2018, vol. 718, pp. 468–76.

    Article  CAS  Google Scholar 

  26. R.K. Nutor, R. Wei, Q. Cao, X. Wang, S. Ding, D. Zhang, F. Li, J.Z. Jiang: APL Mater., 2022, vol. 10(11), p. 111103.

  27. N.T.C. Nguyen, P. Asghari-Rad, H. Park, and H.S. Kim: J. Mater. Sci., 2022, vol. 57(38), pp. 18154–8167.

    Article  CAS  Google Scholar 

  28. R. Motallebi, Z. Savaedi, H. Mirzadeh: Arch. Civ. Mech. Eng., 2022, vol. 22(1), p. 20.

  29. P.K. Tripathi, Y.C. Chiu, S. Bhowmick, Y.C. Lo: Nanomaterials, 2021, vol. 11(8), p. 2111.

  30. N.T.C. Nguyen, P. Asghari-Rad, P. Sathiyamoorthi, A. Zargaran, C.S. Lee, H.S. Kim: Nat. Commun. 2020, vol. 11(1), p. 2736.

  31. S.S. Nene, K. Liu, S. Sinha, M. Frank, S. Williams, and R.S. Mishra: Materials, 2020, vol. 9, p. 100521.

    CAS  Google Scholar 

  32. F.A. Mohamed: Adv. Eng. Mater., 2020, vol. 22(1), p. 1900532.

    Article  CAS  Google Scholar 

  33. H. Shahmir, M. Kawasaki, T.G. Langdon: 10th International Conference on Processing and Manufacturing of Advanced Materials, 2018, Trans. Tech. Publ., 2018, pp. 1059-1064.

  34. H. Zhang, J. Cai, J. Geng, X. Sun, Y. Zhao, X. Guo, and D. Li: Int. J. Refract. Met. Hard Mater., 2023, vol. 112, p. 106163.

    Article  CAS  Google Scholar 

  35. A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov: 11th International Conference on Superplasticity in Advanced Materials, ICSAM 2012, Trans. Tech. Publ., 2013, pp. 146–51.

  36. D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, G.A. Salishchev, and O.N. Senkov: JOM, 2013, vol. 65(12), pp. 1815–28.

    Article  CAS  Google Scholar 

  37. A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov: Mater. Sci. Eng. A, 2012, vol. 533, pp. 107–18.

    Article  CAS  Google Scholar 

  38. A.H. Chokshi: Adv. Eng. Mater., 2020, vol. 22(1), p. 1900748.

    Article  CAS  Google Scholar 

  39. Y. Jia, S. Wu, Y. Mu, L. Xu, C. Ren, K. Sun, J. Yi, Y. Jia, W. Yan, G. Wang: Adv. Sci. 2023, vol. 10(12), p. 2207535.

  40. H. Shahmir, M.S. Mehranpour, M. Kawasaki, and T.G. Langdon: Mater. Trans., 2023, vol. 64(7), pp. 1526–36.

    Article  CAS  Google Scholar 

  41. N.T.C. Nguyen, P. Asghari-Rad, A. Zargaran, E.S. Kim, P. Sathiyamoorthi, and H.S. Kim: Scr. Mater., 2022, vol. 221, p. 114949.

    Article  CAS  Google Scholar 

  42. I.S. Wani, T. Bhattacharjee, S. Sheikh, Y. Lu, S. Chatterjee, S. Guo, P.P. Bhattacharjee, and N. Tsuji: IOP Conf. Ser. Mater. Sci. Eng., 2017, vol. 194, p. 012018.

    Article  Google Scholar 

  43. X. Duan, T. Han, X. Guan, Y. Wang, H. Su, K. Ming, J. Wang, and S. Zheng: J. Mater. Sci. Technol., 2023, vol. 136, pp. 97–108.

    Article  CAS  Google Scholar 

  44. T.S. Kumar, A. Sourav, S. Yebaji, L. Chauhan, A. Babu, A. Chelvane, and T. Shanmugasundaram: Corros. Sci., 2023, vol. 221, p. 111298.

    Article  Google Scholar 

  45. M.J.N.V. Prasad and A.H. Chokshi: Scr. Mater., 2010, vol. 63(1), pp. 136–39.

    Article  CAS  Google Scholar 

  46. A.H. Chokshi: Scr. Mater., 2001, vol. 44(11), pp. 2611–15.

    Article  CAS  Google Scholar 

  47. R. Panicker, A.H. Chokshi, R.K. Mishra, R. Verma, and P.E. Krajewski: Acta Mater., 2009, vol. 57(13), pp. 3683–93.

    Article  CAS  Google Scholar 

  48. J.S. Kim, J.H. Kim, Y.T. Lee, C.G. Park, and C.S. Lee: Mater. Sci. Eng. A, 1999, vol. 263(2), pp. 272–80.

    Article  Google Scholar 

  49. T.G. Langdon: Acta Metall. Mater., 1994, vol. 42(7), pp. 2437–43.

    Article  CAS  Google Scholar 

  50. M. Kawasaki and T.G. Langdon: J. Mater. Sci., 2016, vol. 51, pp. 19–32.

    Article  CAS  Google Scholar 

  51. T. Xiong, S. Zheng, J. Pang, and X. Ma: Scr. Mater., 2020, vol. 186, pp. 336–40.

    Article  CAS  Google Scholar 

  52. A.H. Chokshi and T.G. Langdon: Acta Metall., 1989, vol. 37(2), pp. 715–23.

    Article  CAS  Google Scholar 

  53. X.G. Jiang, S.T. Yang, J.C. Earthman, and F.A. Mohamed: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 863–72.

    Article  CAS  Google Scholar 

  54. A.H. Chokshi and A.K. Mukherjee: Acta Metall., 1989, vol. 37(11), pp. 3007–17.

    Article  CAS  Google Scholar 

  55. R. Raj: Acta Metall., 1978, vol. 26(6), pp. 995–1006.

    Article  CAS  Google Scholar 

  56. R. Raj and M. Ashby: Acta Metall., 1975, vol. 23(6), pp. 653–66.

    Article  Google Scholar 

  57. A.H. Chokshi: Mater. Sci. Eng. A, 2005, vol. 410, pp. 95–99.

    Article  Google Scholar 

  58. A.H. Chokshi and T.G. Langdon: Acta Metall., 1987, vol. 35(5), pp. 1089–101.

    Article  CAS  Google Scholar 

  59. E.E. Underwood: JOM, 1962, vol. 14(12), pp. 914–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Department of Science and Technology (DST), India (EMR/2016/002215). XLL and SG thank the financial support from the Swedish Research Council (Grant Number 2019-03559). The authors also acknowledge the support of DST at IISc Bangalore.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Reddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, S.R., Li, X., Guo, S. et al. High Strain Rate Superplastic Flow and Fracture Characteristics of a Fine-Grained Eutectic High Entropy Alloy. Metall Mater Trans A 55, 173–182 (2024). https://doi.org/10.1007/s11661-023-07240-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07240-4

Navigation