Skip to main content
Log in

Influences of Al Additive on Mechanical Properties of WC–AlxFeCoCrNi Cemented Carbides

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, WC–AlxFeCoCrNi (x = 0 to 0.5) cemented carbides were prepared using spark plasma sintering, and the phase composition, microstructure, and mechanical properties of the WC–AlxFeCoCrNi composites were studied. The FeCoCrNi high-entropy alloy powder showed a single FCC crystal structure, and the Al additive created a BCC phase. The hardness of the WC–AlxFeCoCrNi (x = 0.1 to 0.5) composites at room temperature and 600 °C/800 °C was found to be higher than that of the WC–FeCoCrNi composite, mainly due to the suppression of WC grain growth by the Al additive and the formation of BCC phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Warren and M.B. Waldron: Powder Metall., 1972, vol. 15, pp. 166–80.

    Article  CAS  Google Scholar 

  2. A.J. Ardell: Acta Mater., 1972, vol. 20, pp. 601–09.

    Article  Google Scholar 

  3. I. Konyashin, A.A. Zaitsev, D. Sidorenko, E.A. Levashov, B. Ries, S.N. Konischev, M. Sorokin, A.A. Mazilkin, M. Herrmann, and A. Kaiser: Int. J. Refract. Met. Hard Mater., 2017, vol. 62, pp. 134–48.

    Article  CAS  Google Scholar 

  4. S. Imasato, K. Tokumoto, T. Kitada, and S. Sakaguchi: Int. J. Refract. Met. Hard Mater., 1995, vol. 13, pp. 305–12.

    Article  CAS  Google Scholar 

  5. J. Long, Z. Zhang, T. Xu, and B. Lu: Int. J. Refract. Met. Hard Mater., 2013, vol. 40, pp. 2–7.

    Article  CAS  Google Scholar 

  6. H.Y. Rong, Z.J. Peng, X.Y. Ren, Y. Peng, C.B. Wang, Z.Q. Fu, L.H. Qi, and H.H. Miao: Mater. Sci. Eng. A, 2012, vol. 532, pp. 543–47.

    Article  CAS  Google Scholar 

  7. B.L. Ezquerra, L. Lozada, H. van den Berg, M. Wolf, and J.M. Sanchez: Int. J. Refract. Met. Hard Mater., 2018, vol. 72, pp. 89–96.

    Article  CAS  Google Scholar 

  8. Y. Gao, B.H. Luo, K.J. He, H.B. Jing, Z.H. Bai, W. Chen, and W.W. Zhang: Vacuum, 2017, vol. 143, pp. 271–82.

    Article  CAS  Google Scholar 

  9. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299–303.

    Article  CAS  Google Scholar 

  10. D.B. Miracle and O.N. Senkov: Acta Mater., 2017, vol. 122, pp. 448–511.

    Article  CAS  Google Scholar 

  11. T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, and C.T. Liu: Science, 2018, vol. 362, pp. 933–37.

    Article  CAS  Google Scholar 

  12. S. Praveen, B.S. Murty, and R.S. Kottada: Mater. Sci. Eng. A, 2012, vol. 534, pp. 83–89.

    Article  CAS  Google Scholar 

  13. L. Liu, J.B. Zhu, C. Zhang, J.C. Li, and Q. Jiang: Mater. Sci. Eng. A, 2012, vol. 548, pp. 64–68.

    Article  Google Scholar 

  14. W.-R. Wang, W.-L. Wang, and J.-W. Yeh: J. Alloys Comp., 2014, vol. 589, pp. 143–52.

    Article  CAS  Google Scholar 

  15. C.-C. Juan, M.-H. Tsai, C.-W. Tsai, C.-M. Lin, W.-R. Wang, C.-C. Yang, S.-K. Chen, S.-J. Lin, and J.-W. Yeh: Intermetallics, 2015, vol. 62, pp. 76–83.

    Article  CAS  Google Scholar 

  16. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle: Intermetallics, 2011, vol. 19, pp. 698–706.

    Article  CAS  Google Scholar 

  17. O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, and C.F. Woodward: J. Mater. Sci., 2012, vol. 47, pp. 4062–74.

    Article  CAS  Google Scholar 

  18. G. Zhu, Y. Liu, and J.W. Ye: Mater. Lett., 2013, vol. 113, pp. 80–82.

    Article  CAS  Google Scholar 

  19. Z. Fu and R. Koc: J. Am. Ceram. Soc., 2017, vol. 100, pp. 2803–13.

    Article  CAS  Google Scholar 

  20. C.S. Chen, C.C. Yang, H.Y. Chai, J.W. Yeh, and J.L.H. Chau: Int. J. Refract. Met. Hard Mater., 2014, vol. 43, pp. 200–04.

    Article  CAS  Google Scholar 

  21. W.Y. Luo, Y.Z. Liu, and J.J. Shen: J. Alloys Comp., 2019, vol. 791, pp. 540–49.

    Article  CAS  Google Scholar 

  22. D.H. Zheng: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 2724–29.

    Article  Google Scholar 

  23. W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, and J.-W. Yeh: Intermetallics, 2012, vol. 26, pp. 44–51.

    Article  Google Scholar 

  24. Y.-F. Kao, T.-J. Chen, S.-K. Chen, and J.-W. Yeh: J. Alloys Comp., 2009, vol. 488, pp. 57–64.

    Article  CAS  Google Scholar 

  25. C. Li, J.C. Li, M. Zhao, and Q. Jiang: J. Alloys Comp., 2010, vol. 504, pp. S515-518.

    Article  Google Scholar 

  26. Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, and E.J. Lavernia: Acta Mater., 2016, vol. 107, pp. 59–71.

    Article  CAS  Google Scholar 

  27. D.H. Zheng, X.Q. Li, Y.Y. Li, S.G. Qu, and C. Yang: J. Alloys Comp., 2013, vol. 572, pp. 62–67.

    Article  CAS  Google Scholar 

  28. K. Niihara, R. Morena, and D.P.H. Hasselman: J. Mater. Sci. Lett., 1982, vol. 1, pp. 13–16.

    Article  CAS  Google Scholar 

  29. Image-ProPlus, Media Cybernetics, Inc., 1993–2006.

  30. C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 881–93.

    Article  CAS  Google Scholar 

  31. Y.J. Park, D.Y. Yoon, and N.M. Hwang: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2809–19.

    Article  CAS  Google Scholar 

  32. D.Y. Yang, D.Y. Yoon, and S.J.L. Kang: J. Am. Ceram. Soc., 2011, vol. 94, pp. 1019–24.

    Article  CAS  Google Scholar 

  33. D.H. Zheng, X.Q. Li, Y.Y. Li, S.G. Qu, and C. Yang: Mater. Sci. Eng. A, 2013, vol. 561, pp. 445–51.

    Article  CAS  Google Scholar 

  34. J. Dąbrowa, W. Kucza, G. Cieślak, T. Kulik, M. Danielewski, and J.-W. Yeh: J. Alloys Comp., 2016, vol. 674, pp. 455–62.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Joint Funds of Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110956) and Guangdong Ordinary Universities Youth Innovative Talents Project (No. 2020KQNCX085).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghai Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, D. Influences of Al Additive on Mechanical Properties of WC–AlxFeCoCrNi Cemented Carbides. Metall Mater Trans A 55, 144–149 (2024). https://doi.org/10.1007/s11661-023-07235-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07235-1

Navigation