Skip to main content
Log in

On the Evolution of Austenite During Tempering in High-Carbon High-Silicon Bearing Steel by High Energy X-Ray Diffraction

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of retained austenite in a high-carbon high-silicon bearing steel is explored by high energy X-ray diffraction during continuous heating, giving insights on the control of austenite stability or decomposition during fast tempering. Retained austenite suffers two stages of slight decomposition into bainite below 400 °C, while substantial decomposition into ferrite + cementite occurs above 500 °C. Stress relief decreases retained austenite lattice anisotropy, previously introduced by the stresses caused by martensite formation during quenching. The highest rate of austenite carbon enrichment occurs at 370 °C. In comparison, the highest austenite carbon content is obtained at 466 °C, clarifying a process window for quick retained austenite stabilization with minimal phase decomposition. Austenite achieves intrinsic stacking fault energy values as high as 30 mJ m−2, avoiding the undesired transformation-induced plasticity effect for bearing application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Yan, X. Liu, W.J. Liu, T. Liang, B. Zhang, L. Liu, and Y. Zhao: Mater. Sci. Eng. A, 2017, vol. 684, pp. 261–69.

    Article  CAS  Google Scholar 

  2. S. Liu, Z. Xiong, H. Guo, C. Shang, and R.D.K. Misra: Acta Mater., 2017, vol. 124, pp. 159–72.

    Article  CAS  Google Scholar 

  3. B. Liu, W. Li, X. Lu, X. Jia, and X. Jin: Wear, 2019, vol. 428–429, pp. 127–36.

    Article  Google Scholar 

  4. E. De Moor and J.G. Speer: Automotive Steels: Design, Metallurgy, Processing and Applications, Elsevier, Amsterdam, 2017, pp. 289–316.

    Book  Google Scholar 

  5. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, and P. Brown: Mater. Sci. Technol., 2002, vol. 18, pp. 279–84.

    Article  CAS  Google Scholar 

  6. F.G. Caballero and H.K.D.H. Bhadeshia: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 251–57.

    Article  CAS  Google Scholar 

  7. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–622.

    Article  CAS  Google Scholar 

  8. J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 219–37.

    Article  CAS  Google Scholar 

  9. C. Celada-Casero, C. Kwakernaak, J. Sietsma, and M.J. Santofimia: Mater. Des., 2019, vol. 178, 107847.

    Article  CAS  Google Scholar 

  10. S. Ayenampudi, C. Celada-Casero, J. Sietsma, and M.J. Santofimia: Materialia, 2019, vol. 8, 100492.

    Article  CAS  Google Scholar 

  11. J. Zhang, Z. Dai, L. Zeng, X. Zuo, J. Wan, Y. Rong, N. Chen, J. Lu, and H. Chen: Acta Mater., 2021, vol. 217, 117176.

    Article  CAS  Google Scholar 

  12. A.S. Nishikawa, G. Miyamoto, T. Furuhara, A.P. Tschiptschin, and H. Goldenstein: Acta Mater., 2019, vol. 179, pp. 1–6.

    Article  CAS  Google Scholar 

  13. Y. Toji, H. Matsuda, M. Herbig, P.P. Choi, and D. Raabe: Acta Mater., 2014, vol. 65, pp. 215–28.

    Article  CAS  Google Scholar 

  14. Y. Toji, G. Miyamoto, and D. Raabe: Acta Mater., 2015, vol. 86, pp. 137–47.

    Article  CAS  Google Scholar 

  15. F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, and M.J. Santofimia: Acta Mater., 2016, vol. 104, pp. 72–83.

    Article  CAS  Google Scholar 

  16. A.S. Nishikawa, M.J. Santofimia, J. Sietsma, and H. Goldenstein: Acta Mater., 2018, vol. 142, pp. 142–51.

    Article  CAS  Google Scholar 

  17. S.Y.P. Allain, G. Geandier, J.C. Hell, M. Soler, F. Danoix, and M. Gouné: Scripta Mater., 2017, vol. 131, pp. 15–8.

    Article  CAS  Google Scholar 

  18. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 158–62.

    Article  Google Scholar 

  19. S. Allain, J.-P. Chateau, and O. Bouaziz: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 143–47.

    Article  Google Scholar 

  20. B.C. De Cooman, Y. Estrin, and S.K. Kim: Acta Mater., 2018, vol. 142, pp. 283–362.

    Article  Google Scholar 

  21. B.C. De Cooman, O. Kwon, and K.G. Chin: Mater. Sci. Technol., 2012, vol. 28, pp. 513–27.

    Article  Google Scholar 

  22. G.G. Ribamar, J.D. Escobar, A. Kwiatkowski da Silva, N. Schell, J.A. Ávila, A.S. Nishikawa, J.P. Oliveira, and H. Goldenstein: Acta Mater., 2023, vol. 247, 118742.

    Article  CAS  Google Scholar 

  23. V.K. Euser, D.L. Williamson, A.J. Clarke, and J.G. Speer: ISIJ Int., 2020, vol. 60, pp. 2990–3000.

    Article  CAS  Google Scholar 

  24. M. Villa, F. Niessen, and M.A.J. Somers: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 28–40.

    Article  Google Scholar 

  25. B. Kim, E. Boucard, T. Sourmail, D. San Martín, N. Gey, and P.E.J. Rivera-Díaz-del-Castillo: Acta Mater., 2014, vol. 68, pp. 169–78.

    Article  CAS  Google Scholar 

  26. D.H. Sherman, S.M. Cross, S. Kim, F. Grandjean, G.J. Long, and M.K. Miller: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1698–711.

    Article  CAS  Google Scholar 

  27. J. Epp: Adv. Mater. Res., 2014, vol. 996, pp. 525–31.

    Article  Google Scholar 

  28. S.Y.P. Allain, S. Gaudez, G. Geandier, J.-C. Hell, M. Gouné, F. Danoix, M. Soler, S. Aoued, and A. Poulon-Quintin: Mater. Sci. Eng. A, 2018, vol. 710, pp. 245–50.

    Article  CAS  Google Scholar 

  29. J. Hidalgo, K.O. Findley, and M.J. Santofimia: Mater. Sci. Eng. A, 2017, vol. 690, pp. 337–47.

    Article  CAS  Google Scholar 

  30. A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, and D. Hausermann: High Press. Res., 1996, vol. 14, pp. 235–48.

    Article  Google Scholar 

  31. A.P. Hammersley: FIT2D V12.012 Reference Manual V6.0 ESRF98HA01T, 2004.

  32. G.A. Faria: Exploring metallic materials behavior through in situ crystallographic studies by synchrotron radiation. Universidade Estadual de Campinas, Dissertação Mestrado, 2014, p. 124. https://doi.org/10.47749/T/UNICAMP.2014.942993.

  33. J.D. Escobar, G.A. Faria, L. Wu, J.P. Oliveira, P.R. Mei, and A.J. Ramirez: Acta Mater., 2017, vol. 138, pp. 92–9.

    Article  CAS  Google Scholar 

  34. M.R. Daymond, M.A.M. Bourke, R.B. Von Dreele, B. Clausen, and T. Lorentzen: J. Appl. Phys., 1997, vol. 82, pp. 1554–562.

    Article  CAS  Google Scholar 

  35. Y. Zhang, W. Chen, D.L. McDowell, Y.M. Wang, and T. Zhu: J. Mech. Phys. Solids, 2020, vol. 138, 103899.

    Article  CAS  Google Scholar 

  36. S.M.C. van Bohemen: Scripta Mater., 2013, vol. 69, pp. 315–18.

    Article  Google Scholar 

  37. D.J. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469–74.

    CAS  Google Scholar 

  38. G.R. Lehnhoff, K.O. Findley, and B.C. De Cooman: Scripta Mater., 2014, vol. 92, pp. 19–22.

    Article  CAS  Google Scholar 

  39. R. Xiong, H. Peng, H. Si, W. Zhang, and Y. Wen: Mater. Sci. Eng. A, 2014, vol. 598, pp. 376–86.

    Article  CAS  Google Scholar 

  40. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7, pp. 1897–904.

    Google Scholar 

  41. S. Curtze, V.T. Kuokkala, A. Oikari, J. Talonen, and H. Hänninen: Acta Mater., 2011, vol. 59, pp. 1068–076.

    Article  CAS  Google Scholar 

  42. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3076–090.

    Article  CAS  Google Scholar 

  43. G.G. Ribamar, T.C. Andrade, H.C. de Miranda, and H.F.G. de Abreu: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 4812–825.

    Article  Google Scholar 

  44. L. Cheng, A. Böttger, T.H. de Keijser, and E.J. Mittemeijer: Scripta Metall. Mater., 1990, vol. 24, pp. 509–14.

    Article  CAS  Google Scholar 

  45. E.B. Fonseca, J.D. Escobar, A.H.G. Gabriel, G.G. Ribamar, T. Boll, and É.S.N. Lopes: Addit. Manuf., 2022, vol. 55, 102812.

    CAS  Google Scholar 

  46. S. Harjo, J. Abe, K. Aizawa, W. Gong, and T. Iwahashi: Proceedings of the 12th Asia Pacific Physics Conference (APPC12), 2014, March, Journal of the Physical Society of Japan. http://journals.jps.jp/doi/10.7566/JPSCP.1.014017.

  47. C. Suryanarayana and M.G. Norton: X-Ray Diffraction, Springer, Boston, 1998.

    Book  Google Scholar 

  48. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang: Scripta Mater., 2013, vol. 68, pp. 321–24.

    Article  CAS  Google Scholar 

  49. L.C. Chang and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1995, vol. 11, pp. 874–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and FAPESP, Grant 2019/00691-0. This work was supported by ICC-IMR, Tohoku University. A. Avila is a Serra Hunter Fellow and a CNPq Fellow. Hélio Goldenstein and Giovani G. Ribamar acknowledges partial funding from a CNPq Grant. JPO acknowledges funding by national funds from FCT—Fundação para a Ciência e a Tecnologia, IP, in the scope of the Projects LA/P/0037/2020, UIDP/50025/2020 and UIDB/50025/2020 of the Associate Laboratory Institute of Nanostructures, Nanomodelling and Nanofabrication—i3N. The authors acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for providing experimental facilities. Beamtime was allocated for proposal I-20210899 EC. The research leading to this result has been supported by the Project CALIPSOplus under Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Ribamar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribamar, G.G., Miyamoto, G., Furuhara, T. et al. On the Evolution of Austenite During Tempering in High-Carbon High-Silicon Bearing Steel by High Energy X-Ray Diffraction. Metall Mater Trans A 55, 93–100 (2024). https://doi.org/10.1007/s11661-023-07229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07229-z

Navigation