Skip to main content
Log in

Melt Flow-Induced Mechanical Deformation and Fracture Behaviour of Dendrites in Alloy Solidification

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Cellular automaton-finite volume approach and finite element method are combined to study flow-induced dendritic deformation in alloy solidification. Simulation results reveal that dendrites can undergo mechanical fracture in Al–Cu alloy solidification. The root of primary dendrite is not the location of maximum stress due to secondary dendritic bridging and uneven radius of the primary dendritic trunk. Corresponding dendrite deformation and fracture mechanisms are suggested in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. H.K. Moffatt: Phys. Fluids A, 1991, vol. 3, pp. 1336–43.

    Article  Google Scholar 

  2. C.J. Todaro, M.A. Easton, D. Qiu, D. Zhang, M.J. Bermingham, E.W. Lui, M. Brandt, D.H. StJohn, and M. Qian: Nat. Commun., 2020, vol. 11, p. 142.

    Article  CAS  Google Scholar 

  3. S. Wang, J. Kang, Z. Guo, T.L. Lee, X. Zhang, Q. Wang, C. Deng, and J. Mi: Acta Mater., 2019, vol. 165, pp. 388–97.

    Article  CAS  Google Scholar 

  4. T. Isensee and D. Tourret: Acta Mater., 2022, vol. 234, p. 118035.

    Article  CAS  Google Scholar 

  5. E. Liotti, A. Lui, S. Kumar, Z. Guo, C. Bi, T. Connolley, and P.S. Grant: Acta Mater., 2016, vol. 121, pp. 384–95.

    Article  CAS  Google Scholar 

  6. D. Räbiger, Y. Zhang, V. Galindo, S. Franke, B. Willers, and S. Eckert: Acta Mater., 2014, vol. 79, pp. 327–38.

    Article  Google Scholar 

  7. J.C. Jie, S.P. Yue, J. Liu, D.H. StJohn, Y.B. Zhang, E.Y. Guo, T.M. Wang, and T.J. Li: Acta Mater., 2021, vol. 208, p. 116747.

    Article  CAS  Google Scholar 

  8. N. Balasubramani, G. Wang, D.H. StJohn, and M.S. Dargusch: J. Mater. Sci. Technol., 2021, vol. 65, pp. 38–53.

    Article  CAS  Google Scholar 

  9. N. Ren, C. Panwisawas, J. Li, M. Xia, H. Dong, and J. Li: Acta Mater., 2021, vol. 215, p. 117043.

    Article  CAS  Google Scholar 

  10. M. Rettenmayr: Int. Mater. Rev., 2013, vol. 54, pp. 1–7.

    Article  Google Scholar 

  11. L.K. Aagesen, A.E. Johnson, J.L. Fife, P.W. Voorhees, M.J. Miksis, S.O. Poulsen, E.M. Lauridsen, F. Marone, and M. Stampanoni: Nat. Phys., 2010, vol. 6, pp. 796–800.

    Article  CAS  Google Scholar 

  12. T. Takaki and H. Kashima: J. Cryst. Growth, 2011, vol. 337, pp. 97–101.

    Article  CAS  Google Scholar 

  13. C. Chen, J. Sun, A. Diao, Y. Yang, J. Li, and Y. Zhou: J. Alloys Compd., 2022, vol. 891, p. 161949.

    Article  CAS  Google Scholar 

  14. A.M. Mullis, D.J. Walker, S.E. Battersby, and R.F. Cochrane: Mater. Sci. Eng. A, 2001, vol. 304–306, pp. 245–49.

    Article  Google Scholar 

  15. L.K. Aagesen, A.E. Johnson, J.L. Fife, P.W. Voorhees, M.J. Miksis, S.O. Poulsen, E.M. Lauridsen, F. Marone, and M. Stampanoni: Acta Mater., 2011, vol. 59, pp. 4922–32.

    Article  CAS  Google Scholar 

  16. H. Neumann-Heyme, K. Eckert, and C. Beckermann: Phys. Rev. E, 2015, vol. 92, p. 060401.

    Article  CAS  Google Scholar 

  17. Z. Zhang, C. Wang, B. Koe, C.M. Schlepütz, S. Irvine, and J. Mi: Acta Mater., 2021, vol. 209, p. 116796.

    Article  CAS  Google Scholar 

  18. F. Wang, D. Eskin, J. Mi, C. Wang, B. Koe, A. King, C. Reinhard, and T. Connolley: Acta Mater., 2017, vol. 141, pp. 142–53.

    Article  CAS  Google Scholar 

  19. B. Cai, J. Wang, A. Kao, K. Pericleous, A.B. Phillion, R.C. Atwood, and P.D. Lee: Acta Mater., 2016, vol. 117, pp. 160–69.

    Article  CAS  Google Scholar 

  20. E. Liotti, A. Lui, R. Vincent, S. Kumar, Z. Guo, T. Connolley, I.P. Dolbnya, M. Hart, L. Arnberg, R.H. Mathiesen, and P.S. Grant: Acta Mater., 2014, vol. 70, pp. 228–39.

    Article  CAS  Google Scholar 

  21. N. D’Souza, M. Newell, K. Devendra, P.A. Jennings, M.G. Ardakani, and B.A. Shollock: Mater. Sci. Eng. A, 2005, vol. 413–14, pp. 567–70.

    Article  Google Scholar 

  22. R.D. Doherty: Scr. Mater., 2003, vol. 49, pp. 1219–22.

    Article  CAS  Google Scholar 

  23. J. Pilling and A. Hellawell: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 229–32.

    Article  CAS  Google Scholar 

  24. K. Dragnevski, A.M. Mullis, D.J. Walker, and R.F. Cochrane: Acta Mater., 2002, vol. 50, pp. 3743–55.

    Article  CAS  Google Scholar 

  25. F. Sheykh-jaberi, S.L. Cockcroft, D.M. Maijer, and A.B. Phillion: J. Mater. Process. Technol., 2019, vol. 266, pp. 37–45.

    Article  CAS  Google Scholar 

  26. B. Billia, N. Bergeon, H.N. Thi, H. Jamgotchian, J. Gastaldi, and G. Grange: Phys. Rev. Lett., 2004, vol. 93, p. 126105.

    Article  Google Scholar 

  27. N. Ren, J. Li, N. Bogdan, M. Xia, and J. Li: Comput. Mater. Sci., 2020, vol. 180, p. 109714.

    Article  CAS  Google Scholar 

  28. K. Sugiyama, S. Ii, S. Takeuchi, S. Takagi, and Y. Matsumoto: J. Comput. Phys., 2011, vol. 230, pp. 596–627.

    Article  CAS  Google Scholar 

  29. T. Belytschko, W.K. Liu, and B. Moran: Nonlinear Finite Elements for Continua and Structures, 1st ed. Wiley, Hoboken, 2000.

    Google Scholar 

  30. O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu: The Finite Element Method: Its Basis and Fundamentals, Butterworth-Heinemann, Oxford, 2013.

    Google Scholar 

  31. E. Oñate: Structural Analysis with the Finite Element Method: Basis and Solids, vol. 1, Springer, Dordrecht, 2013.

    Google Scholar 

  32. L. Yang, N. Ren, J. Li, M. Xia, H. Dong, and J. Li: IOP Conf. Ser.: Mater. Sci. Eng., 2023, vol. 1281, p. 012038.

    Article  Google Scholar 

  33. L. Yang, N. Ren, C. Panwisawas, J. Li, M. Xia, H. Dong, and J. Li: J. Mater. Res. Technol., 2023, vol. 25, pp. 4094–109.

    Article  CAS  Google Scholar 

  34. D. Fuloria, P.D. Lee, and D. Bernard: Mater. Sci. Eng. A, 2008, vol. 494, pp. 3–9.

    Article  Google Scholar 

  35. M. Sistaninia, S. Terzi, A.B. Phillion, J.M. Drezet, and M. Rappaz: Acta Mater., 2013, vol. 61, pp. 3831–41.

    Article  CAS  Google Scholar 

  36. F. Ren, H. Ge, D. Cai, J. Li, Q. Hu, M. Xia, and J. Li: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 6243–54.

    Article  Google Scholar 

  37. C. Ma, R. Zhang, Z. Li, X. Jiang, Y. Wang, C. Zhang, H. Yin, and X. Qu: Comput. Mater. Sci., 2022, vol. 215, p. 111815.

    Article  CAS  Google Scholar 

  38. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982.

    Google Scholar 

  39. W. Xu, F. Wang, D. Ma, X. Zhu, D. Li, and A. Bührig-Polaczek: Mater. Des., 2020, vol. 196, p. 109138.

    Article  CAS  Google Scholar 

  40. L. Abou-Khalil, K.S. da Cruz, G. Reinhart, N. Mangelinck-Noël, and H. Nguyen-Thi: Acta Mater., 2022, vol. 241, p. 118370.

    Article  CAS  Google Scholar 

  41. G. Reinhart, A. Buffet, H. Nguyen-Thi, B. Billia, H. Jung, N. Mangelinck-Noël, N. Bergeon, T. Schenk, J. Härtwig, and J. Baruchel: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 865–74.

    Article  CAS  Google Scholar 

  42. G. Reinhart, H. Nguyen-Thi, N. Mangelinck-Noël, J. Baruchel, and B. Billia: JOM, 2014, vol. 66, pp. 1408–14.

    Article  CAS  Google Scholar 

  43. J.W. Aveson, G. Reinhart, C.J.L. Goddard, H. Nguyen-Thi, N. Mangelinck-Noël, A. Tandjaoui, J.R. Davenport, N. Warnken, F. di Gioacchino, T.A. Lafford, N. D’Souza, B. Billia, and H.J. Stone: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 5234–41.

    Article  Google Scholar 

  44. P. Hallensleben, F. Scholz, P. Thome, H. Schaar, I. Steinbach, G. Eggeler, and J. Frenzel: Crystals, 2019, vol. 9, p. 149.

    Article  Google Scholar 

  45. J. Aveson, G. Reinhart, H. Nguyen-Thi, N. Mangelinck-Noël, A. Tandjaoui, B. Billia, K. Goodwin, T. Lafford, J. Baruchel, H. Stone, and N. D’Souza: in Superalloys 2012 (Twelfth International Symposium), 2012, pp. 615–24.

  46. J.H. Jeong, N. Goldenfeld, and J.A. Dantzig: Phys. Rev. E, 2001, vol. 64, p. 041602.

    Article  CAS  Google Scholar 

  47. M. Eshraghi, M. Hashemi, B. Jelinek, and S. Felicelli: Metals, 2017, vol. 7, p. 474.

    Article  Google Scholar 

  48. A. Zhang, S. Meng, Z. Guo, J. Du, Q. Wang, and S. Xiong: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1514–26.

    Article  Google Scholar 

  49. L. Qin, Z. Zhang, B. Guo, W. Li, and J. Mi: Acta Metall. Sin. (Engl. Lett.), 2023, vol. 36, pp. 857–64.

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by Natural Science Foundation of Shanghai (No. 22ZR1430700) and National Natural Science Foundation of China (Nos. 52074182 and 91860121).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1467 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Ren, N., Panwisawas, C. et al. Melt Flow-Induced Mechanical Deformation and Fracture Behaviour of Dendrites in Alloy Solidification. Metall Mater Trans A 54, 4612–4619 (2023). https://doi.org/10.1007/s11661-023-07224-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07224-4

Navigation