Skip to main content
Log in

Pseudobinary Eutectic Growth and Structural Evolution Control of Quinary Ti27Ni25Co20Nb14V14 High-Entropy Alloy Through Containerless Processing

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The rapid eutectic growth kinetics of undercooled liquid Ti27Ni25Co20V14Nb14 high-entropy alloy (HEA) was investigated by electromagnetic levitation (EML) and drop tube (DT) techniques. The maximum liquid undercoolings attained 207 K (0.14 TL) at levitated state and 385 K (0.25 TL) under free fall condition, respectively. During EML experiments, a microstructural transition from regular lamellar eutectic to anomalous eutectic was achieved by controlling the liquid undercooling above 62 K. An increase in volume fraction of anomalous eutectic and significant grain refinement were modulated by further elevating the liquid undercooling. The maximum growth velocity of lamellar eutectic was measured as 1.47 mm s−1, whereas that of anomalous eutectic reached 35.64 mm s−1 at the largest undercooling of 207 K. Under microgravity condition, the microstructure transformed twice by adjusting alloy droplet diameters. Two critical diameters were determined, and the corresponding undercooling thresholds were calculated as 73 K and 251 K, respectively. When the droplet diameter decreased to 705 μm, the “lamellar eutectic–anomalous eutectic” microstructure transition occurred, which was similar to that under EML condition. Notably, a coarse structure consisting of primary hcp-NbV grains and intergranular anomalous eutectic was formed in tiny alloy droplets with less than 95 mm diameter, which is attributed to the independent nucleation of hcp-NbV phase. Furthermore, the crystalline orientation relationship between B2-TiNi and hcp-NbV phases was determined as \(\left\langle {11\overline{2} \overline{3} } \right\rangle_{{{\text{hcp}}}}\)//\(\left\langle {111} \right\rangle_{{{\text{B}}2}}\) and \(\left\{ {1\overline{1} 00} \right\}_{{{\text{hcp}}}}\)//\(\left\{ {110} \right\}_{{{\text{B2}}}}\) in lamellar eutectic by TEM analysis. The alloy microhardness was remarkably enhanced after containerless rapid solidification, which resulted mainly from the crystalline grain refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Antonov, M. Detrois, and S. Tin: Metall. Mater. Trans. A, 2017, vol. 49A, pp. 305–20.

    Google Scholar 

  2. R. John, A. Karati, J. Joseph, D. Fabijanic, and B.S. Murty: J. Alloys Compd., 2020, vol. 835, p. 155424.

    Article  CAS  Google Scholar 

  3. L.F. Lin and C.W. Tsai: Philos. Mag. Lett., 2019, vol. 99, pp. 226–34.

    Article  CAS  Google Scholar 

  4. R.S. Mishra and S.S. Nene: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 889–96.

    Article  Google Scholar 

  5. T. Borkar, B. Gwalani, D. Choudhuri, T. Alam, A.S. Mantri, M.A. Gibson, and R. Banerjee: Intermetallics, 2016, vol. 71, pp. 31–42.

    Article  CAS  Google Scholar 

  6. X.Z. Gao, Y.P. Lu, B. Zhang, N.N. Liang, G.Z. Wu, G. Sha, J.Z. Liu, and Y.H. Zhao: Acta Mater., 2017, vol. 141, pp. 59–66.

    Article  CAS  Google Scholar 

  7. N. Shah, M.J. Deepu, M.R. Rahul, and G. Phanikumar: J. Alloys Compd., 2022, vol. 929, p. 167268.

    Article  CAS  Google Scholar 

  8. B. Chanda, G. Potnis, P.P. Jana, and J. Das: J. Alloys Compd., 2020, vol. 827, p. 154226.

    Article  CAS  Google Scholar 

  9. Y.F. Li, W.J. Chen, C.Y. Lu, H.X. Li, W.J. Zheng, Y.H. Ma, Y. Jin, W.Y. Jin, Z.L. Gao, J.G. Yang, and Y.M. He: Mater. Sci. Eng. A, 2022, vol. 857, p. 144100.

    Article  CAS  Google Scholar 

  10. A. Nassar, A. Mullis, R. Cochrane, Z. Aslam, S. Micklethwaite, and L. Cao: J. Alloys Compd., 2022, vol. 900, p. 163350.

    Article  CAS  Google Scholar 

  11. P.X. Yan, J. Chang, W.L. Wang, X.N. Zhu, M.J. Lin, and B. Wei: Acta Mater., 2022, vol. 237, p. 118149.

    Article  CAS  Google Scholar 

  12. Y. Ruan, Q.Q. Wang, S.Y. Chang, and B. Wei: Acta Mater., 2017, vol. 141, pp. 456–65.

    Article  CAS  Google Scholar 

  13. S.P. Nikanorov, M.P. Volkov, V.N. Gurin, Yu.A. Burenkov, L.I. Derkachenko, B.K. Kardashev, L.L. Regel, and W.R. Wilcox: Mater. Sci. Eng. A, 2005, vol. 390, pp. 63–69.

    Article  Google Scholar 

  14. M. Leonhardt, W. Loeser, and H.-G. Lindenkreuz: Mater. Sci. Eng. A, 1999, vol. 271, pp. 31–37.

    Article  Google Scholar 

  15. L. Hu, L. Wang, M.J. Lin, and B. Wei: Metall. Mater. Trans. A, 2020, vol. 52A, pp. 167–80.

    Google Scholar 

  16. O. Senninger and P.W. Voorhees: Acta Mater., 2016, vol. 116, pp. 308–20.

    Article  CAS  Google Scholar 

  17. K.A. Jackson and J.D. Hunt: AIME Met. Soc. Trans., 1966, vol. 236, pp. 1129–142.

    CAS  Google Scholar 

  18. B. Wei, G.C. Yang, and Y.H. Zhou: Acta Metall. Mater., 1991, vol. 39, pp. 1249–58.

    Article  CAS  Google Scholar 

  19. M. Leonhardt, W. Loser, and H.G. LindenKreuz: Acta Mater., 1999, vol. 47, pp. 2961–68.

    Article  CAS  Google Scholar 

  20. W.J. Yao, X.J. Han, and B. Wei: J. Alloys Compd., 2003, vol. 348, pp. 88–99.

    Article  CAS  Google Scholar 

  21. C.R. Clopet, R.F. Cochrane, and A.M. Mullis: Acta Mater., 2013, vol. 61, pp. 6894–902.

    Article  CAS  Google Scholar 

  22. A.M. Mullis and C.R. Clopet: Acta Mater., 2018, vol. 145, pp. 186–95.

    Article  CAS  Google Scholar 

  23. C.R. Clopet, R.F. Cochrane, and A.M. Mullis: Appl. Phys. Lett., 2013, vol. 102, p. 031906.

    Article  Google Scholar 

  24. D.G. Beck, S.M. Copley, and M. Bass: Metall. Trans. A, 1982, vol. 13A, pp. 1879–89.

    Article  Google Scholar 

  25. W.J. Xie, C.D. Cao, Y.J. Lu, and B. Wei: Phys. Rev. E, 2002, vol. 66, p. 061601.

    Article  CAS  Google Scholar 

  26. L.G. Cao, R.F. Cochrane, and A.M. Mullis: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 4705–15.

    Article  Google Scholar 

  27. S.J. Yang, W.L. Wang, and B. Wei: Acta Phys. Sin., 2015, vol. 64, p. 056401.

    Article  Google Scholar 

  28. S. Walder and P.L. Ryder: J. Appl. Phys., 1993, vol. 73, pp. 1965–70.

    Article  CAS  Google Scholar 

  29. V. Bathula, C. Liu, K. Zweiacker, J. McKeown, and J.M.K. Wiezorek: Acta Mater., 2020, vol. 195, pp. 341–57.

    Article  CAS  Google Scholar 

  30. Y.J. Lv and B. Wei: Chin. Phys. Lett., 2003, vol. 20, pp. 1379–82.

    Article  Google Scholar 

  31. R. Trivedi, P. Magnin, and W. Kurz: Acta Mater., 1987, vol. 35, pp. 971–80.

    Article  CAS  Google Scholar 

  32. N.J.E. Adkins and P. Tsakiropoulos: Mater. Sci. Technol., 1991, vol. 7, pp. 334–40.

    Article  CAS  Google Scholar 

  33. E. Lee and S. Ahn: Acta Metall. Mater., 1994, vol. 42, pp. 3231–43.

    Article  CAS  Google Scholar 

  34. S.K. Chen, Z.H. Aitken, Z.X. Wu, Z.G. Yu, R. Banerjee, and Y.W. Zhang: Mater. Sci. Eng. A, 2020, vol. 773, p. 138873.

    Article  CAS  Google Scholar 

  35. Y. Ruan, X.J. Wang, and S.Y. Chang: Acta Mater., 2015, vol. 91, pp. 183–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Key R&D Program (No. 2021-YFA-0716301) and National Natural Science Foundation of China (No. 52088101) as well as Key R&D Program of Shaanxi Province (No. 2023-YBGY-437) The authors are also grateful to Q.C. Zhong, W.H. Li, S. Sha, S.S. Xu, and X.L. Zhao for their help with experiments and valuable discussion.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingbo Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Chang, J., Yan, P. et al. Pseudobinary Eutectic Growth and Structural Evolution Control of Quinary Ti27Ni25Co20Nb14V14 High-Entropy Alloy Through Containerless Processing. Metall Mater Trans A 54, 4919–4930 (2023). https://doi.org/10.1007/s11661-023-07213-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07213-7

Navigation