Skip to main content
Log in

Microstructures and Creep Properties of Type 316LN Stainless Steel Weld Joints

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present investigation, creep deformation and rupture behavior of type 316LN stainless steel weld joints fabricated from hotwire tungsten inert gas (HW-TIG), activated-TIG (A-TIG), and hybrid laser metal inert gas (HLM) welding processes were studied. The creep testing was carried out at 923 K under various stress levels. The weld joints have undergone a higher rate of deformation and exhibited lower creep rupture life as compared to that of the base metal. The welding process significantly influenced the delta (δ)-ferrite content in the weld metal of stainless steel weld joints [A-TIG (1.7 ferrite number (FN)], HLM (1.3 FN), and HW-TIG (3.5 FN), its morphology and also the creep cavity density during creep deformation. The HW-TIG weld joint possessed significantly lower creep rupture life than that of the A-TIG and HLM weld joints. The HLM joint has exhibited a better creep rupture life than the A-TIG and HW-TIG weld joints. The microstructural constituents, i.e., δ-ferrite content, columnar and equiaxed dendrites, and sigma (σ)-phase formation during creep, have significantly influenced the creep deformation and rupture strength of the joints. The orientation of the columnar structure, which is parallel to stress direction and lower δ-ferrite content in the A-TIG and HLM joints, has resulted in lower creep cavitation and higher creep rupture strength as compared to that of the HW-TIG weld joint. As the 316LN stainless steel weld joint processed by the HLM welding process exhibited the best creep rupture life, the HLM welding process is recommended for the welding of 316LN stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. A.K. Bhaduri, K. Laha, V. Ganesan, T. Sakthivel, M. Nandagopal, G.V.P. Reddy, J.G. Kumar, V.D. Vijayanand, S.P. Selvi, G. Srinivasan, C.R. Das, A. Nagesha, S. Ravi, P. Parameswaran, R. Sandhya, and S.K. Albert: Int. J. Press. Vessel Pip., 2016, vol. 139–140, pp. 123–36.

    Article  Google Scholar 

  2. B. Arivazhagan and M. Vasudevan: J. Manuf. Process., 2015, vol. 18, pp. 55–59.

    Article  Google Scholar 

  3. M. Vasudevan: PhD Thesis, Indian Institute of Technology, Chennai, India.

  4. T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, M.D. Mathew, and A.K. Bhaduri: Procedia Eng., 2013, vol. 55, pp. 408–13.

    Article  CAS  Google Scholar 

  5. R.G. Berggren, N.C. Cole, G.M. Goodwin, J.O. Stiegler, G.M. Slaughter, R.J. Gray, and R.T. King: Weld. J., 1978, vol. 57, pp. 167s–174s.

    Google Scholar 

  6. R.G. Thomas: Weld. J., 1978, vol. 57, pp. 1–6.

    Google Scholar 

  7. G. Sasikala, S.L. Mannan, M.D. Mathew, and K.B. Rao: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1175–85.

    Article  CAS  Google Scholar 

  8. G. Sasikala, S.K. Ray, and S.L. Mannan: Acta Mater., 2004, vol. 52, pp. 5677–86.

    Article  CAS  Google Scholar 

  9. K. Hori, K. Kusano, and T. Myoga: Weld. Int., 2004, vol. 18, pp. 456–68.

    Article  Google Scholar 

  10. M. Vasudevan: J. Mater. Eng. Perform., 2017, vol. 26, pp. 1325–36.

    Article  CAS  Google Scholar 

  11. T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, M.D. Mathew, and A.K. Bhaduri: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6971–80.

    Article  CAS  Google Scholar 

  12. C. Fang, J. Xin, W. Dai, J. Wei, J. Wu, and Y. Song: J. Laser Appl., 2020, vol. 32, p. 012009.

    Article  CAS  Google Scholar 

  13. X.N. Wang, S.H. Zhang, J. Zhou, M. Zhang, C.J. Chen, and R.D.K. Misra: Opt. Lasers Eng., 2017, vol. 91, pp. 86–96.

    Article  Google Scholar 

  14. J. Yan, M. Gao, and X. Zeng: Opt. Lasers Eng., 2010, vol. 48, pp. 512–17.

    Article  Google Scholar 

  15. P.L. Moore, D.S. Howse, and E.R. Wallach: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 314–22.

    Article  CAS  Google Scholar 

  16. A.R. Pavan, N. Chandrasekar, B. Arivazhagan, S. Kumar, and M. Vasudevan: CIRP J. Manuf. Sci. Technol., 2021, vol. 35, pp. 675–90.

    Article  Google Scholar 

  17. A.R. Pavan, B. Arivazhagan, M. Vasudevan, and S. Govind Kumar: CIRP J. Manuf. Sci. Technol., 2022, vol. 39, pp. 294–307.

    Article  Google Scholar 

  18. A.R. Pavan, B. Arivazhagan, G.K. Sharma, S.A. Kumar, S. Mahadevan, and M. Vasudevan: J. Mater. Eng. Perform., 2022, https://doi.org/10.1007/s11665-022-06654-2.

    Article  Google Scholar 

  19. S. Kou: Welding Metallurgy, Wiley, Hoboken, 2003.

    Google Scholar 

  20. M. Ragavendran and M. Vasudevan: Mater. Manuf. Process., 2020, vol. 35, pp. 922–34.

    Article  CAS  Google Scholar 

  21. M.D. Mathew, S. Latha, and K.B.S. Rao: Mater. Sci. Eng. A, 2007, vol. 456, pp. 28–34.

    Article  Google Scholar 

  22. V. Shankar, T.P.S. Gill, S.L. Mannan, and S. Sundarlsan: Sadhana Acad. Proc. Eng. Sci., 2003, vol. 28, pp. 359–82.

    CAS  Google Scholar 

  23. A. Elmesalamy, J.A. Francis, and L. Li: Int. J. Press. Vessel Pip., 2014, vol. 113, pp. 49–59.

    Article  CAS  Google Scholar 

  24. D.R. Bajic, M.M. Savitsky, G.M. Melnichuk, and A.F. Lupan: Pat. Weld. J. C/C Avtom. SVARKA, 2002, vol. 9, pp. 30–34.

    Google Scholar 

  25. K.R. Gadelrab, G. Li, M. Chiesa, and T. Souier: J. Mater. Res., 2012, vol. 27, pp. 1573–79.

    Article  CAS  Google Scholar 

  26. M. Ragavendran, M. Vasudevan, and N. Hussain: J. Mater. Eng. Perform., 2022, https://doi.org/10.1007/s11665-021-06534-1.

    Article  Google Scholar 

  27. S.L. Mannan and M.D. Mathew: Bull. Mater. Sci., 1996, vol. 19, pp. 985–1007.

    Article  CAS  Google Scholar 

  28. M.D. Mathew, K. Laha, and V. Ganesan: Mater. Sci. Eng. A, 2012, vol. 535, pp. 76–83.

    Article  CAS  Google Scholar 

  29. RCC-MR, Design and Construction Rules for Mechanical Components for FBR Nuclear Islands, Section I–Subsection Z, Appendix 3, 1985.

  30. B.A. Senior: J. Mater. Sci., 1990, vol. 25, pp. 45–53.

    Article  CAS  Google Scholar 

  31. J.J. Smith and R.A. Farrar: Int. Mater. Rev., 1993, vol. 38, pp. 25–51.

    Article  CAS  Google Scholar 

  32. B. Weiss and R. Stickler: Metall. Mater. Trans. B, 1972, vol. 3B, pp. 851–66.

    Article  Google Scholar 

  33. J.K. Lai and A. Wickens: Acta Metall., 1979, vol. 27, pp. 217–30.

    Article  CAS  Google Scholar 

  34. C.-C. Hsieh and W. Wu: ISRN Metall., 2012, vol. 2012, pp. 1–16.

    Article  Google Scholar 

  35. A.F. Padilha, D.M. Escriba, E. Materna-Morris, M. Rieth, and M. Klimenkov: J. Nucl. Mater., 2007, vol. 362, pp. 132–38.

    Article  CAS  Google Scholar 

  36. T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, M.D. Mathew, and A.K. Bhaduri: J. Nucl. Mater., 2011, vol. 413, pp. 36–40.

    Article  CAS  Google Scholar 

  37. M. Ragavendran, J.G. Kumar, and M. Vasudevan: Mater. Sci. Eng. A, 2022, vol. 832, p. 142445.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Arup Dasgupta, Head, Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research (IGCAR), India, for providing the EBSD Facility. Dr. S. Mahadevan and Shri. S. Arun Kumar are earnestly acknowledged for residual stress measurements using the X-ray diffraction technique and fruitful discussions during this work.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Arivazhagan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavan, A.R., Sakthivel, T., Arivazhagan, B. et al. Microstructures and Creep Properties of Type 316LN Stainless Steel Weld Joints. Metall Mater Trans A 54, 4868–4890 (2023). https://doi.org/10.1007/s11661-023-07208-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07208-4

Navigation