Skip to main content
Log in

Microstructure, Micro-hardness and Impact Toughness of Welded Austenitic Stainless Steel 316L

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The objective of the paper is to study the mechanical behaviour of two welded joints that differ in their filler metals in regards with the microstructure. Gas tungsten arc welding process was employed to perform the welded joints between AISI 316L as a base metal and either ER316LN or ER308LN as filler metal. For both the welded joints, the microstructure of the fusion zone was predominantly austenitic containing a small amount of residual dendritic δ-ferrite in skeletal morphology formed during solidification (FA mode) and whose transformation to austenite upon cooling was incomplete. However, XRD analysis pointed out a relatively higher amount of δ-ferrite in the fusion zone of the welded joint (316L/ER308LN) than that in the welded joint (316L/ER316LN), as it could be expected from the calculated (Creq/Nieq) ratio of Schaeffler formula. The composite microstructure of the fusion zones exhibited higher values of micro-hardness than the heat-affected zone which contained coarse grains. Charpy impact toughness was higher for the welded joint realized using ER308LN as a filler metal but both types of welds fractured in a ductile mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Davidson J H, Microstructure of Steels and Cast Irons, Springer, Berlin (2003).

    Google Scholar 

  2. David G, Les aciers inoxydables: propriétés- mise en œuvre -emploi-Normes. Technique et Documentation-Lavoisier (1990).

  3. Masubuchi K, Analusis of Welded Structure Rsidual stresses, Distortion, and their Consequences, 1980th ed. USA: International Series on Materials Science and Technology, Volume 33.

  4. Rehouma K M, Shabadi R, Taillard R, Bouabdallah M, and Imad A, Mater Manuf Process 27 (2012) 1370.

    Article  Google Scholar 

  5. Amudarasan N V, Palanikumar K, and Shanmugam K, Int J Appl Innov Eng Manag 2 (2013) 269.  

    Google Scholar 

  6. Choubey A, and Jatti V S, Trans Appl Theor Mech 9 (2014) 222.

    Google Scholar 

  7. Mukherjee M, and Pal T K, Mater Charact 131 (2017) 406.

    Article  Google Scholar 

  8. Ganesh K C, Balasubramanian K R, Vasudevan M, Vasantharaja P, and Chandrasekhar N, Metall Mater Trans B Process Metall Mater Process Sci 47 (2016) 1347.

    Article  Google Scholar 

  9. Aviles Santillana I, Boyer C, Fernandez Pison P, Foussat A, Langeslag S A E, Perez Fontenla A T, Ruiz Navas E M, and Sgobba S, J Mater Eng Perform 27 (2018) 1995.

    Article  Google Scholar 

  10. Tümer M, and Ramazan Y, Int J Adv Manuf Technol 87 (2016) 2567.

    Article  Google Scholar 

  11. Jang A Y, Lee D J, Lee S H, Shim J H, Kang S W, and Lee H W, Mater Des 32 (2011) 371.

    Article  Google Scholar 

  12. Kim Y H, Lee D J, Byun J C, Jung K H, Kim J I, Lee H J, Shin Y T, Kim S H, and Lee H W, Mater Des 32 (2011) 330.

    Article  Google Scholar 

  13. Devendranath Ramkumar K, Mishra D, Thiruvengatam G, Sudharsan S P, Mohan T H, Saxena V, Pandey R, and Arivazhagan N, Bull Mater Sci 38 (2015) 837.

    Article  Google Scholar 

  14. Jaberi F S, and Kokabi A H, J Mater Eng Perform 21 (2012) 1447.

    Article  Google Scholar 

  15. Arivazhagan B, Prabhu R, Albert S K, Kamaraj M, and Sundaresan S, J Mater Eng Perform 18 (2009) 999.

    Article  Google Scholar 

  16. Srivastava B K, Int J Sci Adv Technol 1 (2011) 83.

    Google Scholar 

  17. Devendranath Ramkumar K, Arivazhagan N, and Narayanan S, Mater Des 40 (2012) 70.

    Article  Google Scholar 

  18. Bang K S, Kim W Y, Park C, Ahn Y H, and Lee J B, Mater Sci Forum, 539543 (2007) 3906.

    Article  Google Scholar 

  19. den Ouden G, Verhagen J G and Tichelaar G W, Weld Res Suppl, 54 (1975) 87

    Google Scholar 

  20. Lippold J, and Kotecki D, Welding Metallurgy and Weldability of Stainless Steels, Wiley, Hoboken (2005), p 141.

    Google Scholar 

  21. Vander Voort G F, Metallography and Microstructures 2004 ASM, ASM Handbook, vol. 9, ASM International, Novelty (2004).

    Google Scholar 

  22. Martín Ó, De Tiedra P, García C, Martín F, and López M, Corros Sci 54 (2012) 119.

    Article  Google Scholar 

  23. Dadfar M, Fathi M H, Karimzadeh F, Dadfar M R, and Saatchi A, Mater Lett 61 (2007) 2343.

    Article  Google Scholar 

  24. Zareie Rajani H R, Torkamani H, Sharbati M, and Raygan S, Mater Des 34 (2012) 51.

    Article  Google Scholar 

  25. Shankar V, Gill T P S, Mannan S L, and Sundaresan S, Sadhana 28 (2003) 359.

    Article  Google Scholar 

  26. Garcia C, de Tiedra M P, Blanco Y, Martin O, and Martin F, Corros Sci 50 (2008) 2390.

    Article  Google Scholar 

  27. Garcia C, Martin F, de Tiedra P, Blanco Y, and Lopez M, Corros Sci 50 (2008) 1184.

    Article  Google Scholar 

  28. Mirshekari G R, Tavakoli E, Atapour M, and Sadeghian B, Mater Des 55 (2014) 905.

    Article  Google Scholar 

  29. Elmer J W, Allen S M, and Eagar T W, Metall Trans A 20 (1989) 2117.

    Article  Google Scholar 

  30. Brooks J A and Thompson A W, Int Mater Rev, 36 (1991) 16

    Article  Google Scholar 

  31. Rajasekhar K, Harendranath C S, Raman R, and Kulkarni S D, Mater Charact 38 (1997) 53.

    Article  Google Scholar 

  32. Chandra K, Kain V, Raja V S, Tewari R, and Dey G K, Corros Sci 54 (2012) 278.

    Article  Google Scholar 

  33. Baldenebro-Lopez F J, Gomez-Esparza C D, Corral-Higuera R, Arredondo-Rea S P, Pellegrini-Cervantes M J, Ledezma-Sillas J E, Martinez-Sanchez R, Herrera-Ramirez J M, Materials 8 (2015) 451.

    Article  Google Scholar 

  34. Syahida N, Nasir M, Khairul M, Abdul A, Mamat S, and Iqbal M, ARPN J Eng Appl Sci 11 (2016) 6166.

    Google Scholar 

  35. Venkata Ramana P, Reddy G M, and Mohandas T, Sci Technol Weld Join 13 (2013) 388.

    Article  Google Scholar 

  36. Nam T-H, An E, Kim B J, Shin S, Ko W-S, Park N, and Kang N, Metals, 8 (2018).

  37. Zhu P, Cao X, Wang W, Zhao J, Lu Y, and Shoji T, J Mater Res 32 (2017) 3904.

    Article  Google Scholar 

  38. Kar J, Roy S K, and Roy G G, Metall Mater Trans A 48 (2017) 1759.

    Article  Google Scholar 

  39. Sathiya P, Aravindan S, Soundararajan R, and Noorul Haq A, J Mater Sci 44 (2009) 114.

    Article  Google Scholar 

  40. Gharibshahiyan E, Raouf A H, Parvin N, and Rahimian M, Mater Des 32 (2011) 2042.

    Article  Google Scholar 

  41. Avazkonandeh-Gharavol M H, Haddad-Sabzevar M, and Haerian A, Mater Des 30 (2009) 1902.

    Article  Google Scholar 

  42. Robert P H, and Cahn W, Physical Metallurgy, 4th ed. Elsevier Science B.V., New York (1996).

    Google Scholar 

  43. H K D H Bhadeshia, and R W K Honeycombe, Steels Microstructure and Properties. Elsevier Ltd, New York (2006).

    Google Scholar 

  44. Totten G E, Steel Heat Treatment Handbook, Portland State University, Portland (2006).

    Google Scholar 

  45. Mills W J, Int Mater Rev 42 (1997) 45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Sriba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriba, A., Vogt, JB. & Amara, SE. Microstructure, Micro-hardness and Impact Toughness of Welded Austenitic Stainless Steel 316L. Trans Indian Inst Met 71, 2303–2314 (2018). https://doi.org/10.1007/s12666-018-1362-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1362-4

Keywords

Navigation