Skip to main content
Log in

Tellurium Doping in MnS Inclusions and Corresponding Modification Effect: Experimental and First-Principles Study

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Te is sulfide inclusion morphology optimization element in steel, and Te doping in MnS inclusions is considered the main mechanism for modification, but the mechanism of Te doping behavior itself is not clear. Te-doped MnS inclusion behavior in steel was investigated using optical microscope, electron probe microanalysis, transmission electron microscopy, thermomechanical simulator, and first-principles calculations. After Te treatment, the amount of type II sulfides was decreased, the size of sulfides was increased, and the sulfides were strengthened. The aspect ratio of hot deformed sulfides was decreased significantly through Te doping. The atomic ratio of S to Te for MnS inclusions with MnTe adhesion was determined to be between 66 and 49 through the energy and wavelength spectra. The crystal structure of the Te-doped MnS inclusions retained the rock-salt structure, and no ordered structure was formed. The first-principles calculation results showed that the doping of Te led to the replacement of S atoms from MnS. Lattice distortion was observed after Te doping, and the lattice constant increased; Te doping mainly affected the position of the nearest Mn atoms, and the lattice distortion can affect about three layers of atoms along the < 100 > direction. Considering the cost-effectiveness of adding Te, the mass ratio of Te to S should be controlled at approximately 0.063 during actual production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L.V. Popova, D.V. Lebedev, and A.G. Nasibov: Properties of steel 16G2AF with microadditions of tellurium. Met. Sci. Heat Treat., 1983, vol. 25(3), pp. 184–86. https://doi.org/10.1007/BF00805969.

    Article  Google Scholar 

  2. I.V. Popova, A.G. Nasibov, G.G. Gulei, and G.A. Sveshnikova: Nonmetallic inclusions and austenite grains of steel containing tellurium. Met. Sci. Heat Treat., 1986, vol. 28(1), pp. 52–55. https://doi.org/10.1007/BF00735548.

    Article  Google Scholar 

  3. Q. Huang, Y. Ren, Y. Luo, S. Ji, and L. Zhang: Deformation of MnS–MnTe inclusions in a sulfur-containing free-cutting steel with tellurium treatment. Metall. Mater. Trans. B, 2022, https://doi.org/10.1007/s11663-022-02698-w.

    Article  Google Scholar 

  4. P. Shen, Q. Yang, D. Zhang, S. Yang, and J. Fu: The effect of tellurium on the formation of MnTe-MnS composite inclusions in non-quenched and tempered steel. Metals, 2018, vol. 8(8), p. 639. https://doi.org/10.3390/met8080639.

    Article  CAS  Google Scholar 

  5. P. Shen, L. Zhou, Q. Yang, Z. Zeng, K. Ai, and J. Fu: Modification of MnS inclusion by tellurium in 38MnVS6 micro-alloyed steel. Metall. Res. Technol., 2020, vol. 117(6), p. 615. https://doi.org/10.1051/metal/2020066.

    Article  CAS  Google Scholar 

  6. P. Shen, H. Zhang, X. Xu, Q. Yang, and J. Fu: Study on the high-temperature evolution and formation mechanism of inclusions in Te-treated resulfurized special steel. Steel Res. Int., 2021, vol. 92(11), p. 2100235. https://doi.org/10.1002/srin.202100235.

    Article  CAS  Google Scholar 

  7. J.Y. Liu, C.S. Liu, R.J. Bai, W. Wang, Q.B. Wang, H. Zhang, and H.W. Ni: Morphological transformation of elongated MnS inclusions in non-quenched and tempered steel during isothermal heating. J. Iron Steel Res. Int., 2022, https://doi.org/10.1007/s42243-022-00829-w.

    Article  Google Scholar 

  8. J.L. Lu, G.G. Cheng, M. Wu, G. Yang, and J.L. Che: Detection and analysis of magnetic particle testing defects on heavy truck crankshaft manufactured by microalloyed medium-carbon forging steel. J. Iron Steel Res. Int., 2020, vol. 27, pp. 608–16. https://doi.org/10.1007/s42243-019-00334-7.

    Article  CAS  Google Scholar 

  9. X.Y. Xu, Z.Q. Zeng, Q.R. Tian, C.W. Cao, P. Shen, and J.X. Fu: Application of fractal theory to study morphology of manganese sulfide inclusion in resulfurized free-cutting steels. J. Iron Steel Res. Int., 2023, vol. 30, pp. 137–49. https://doi.org/10.1007/s42243-022-00826-z.

    Article  CAS  Google Scholar 

  10. Q.S. Zhang, Y. Min, J.J. Xu, and C.J. Liu: Formation and evolution behavior of inclusions in Al-killed resulfurized free-cutting steel with magnesium treatment. J. Iron Steel Res. Int., 2020, vol. 27, pp. 631–42. https://doi.org/10.1007/s42243-020-00401-4.

    Article  CAS  Google Scholar 

  11. F. Wang, H. Guo, W. Liu, S. Yang, S. Zhang, and J. Li: Control of MnS inclusions in high- and low-sulfur steel by tellurium treatment. Materials, 2019, vol. 12(7), p. 1034. https://doi.org/10.3390/ma12071034.

    Article  CAS  Google Scholar 

  12. S. Zhang, F. Wang, S. Yang, J. Liu, and J. Li: Sulfide transformation with tellurium treatment for Y15 free-cutting steel. Metall. Mater. Trans. B, 2019, vol. 50(5), pp. 2284–95. https://doi.org/10.1007/s11663-019-01627-8.

    Article  CAS  Google Scholar 

  13. X. Wu, L.P. Wu, J.B. Xie, P. Shen, and J.X. Fu: Modification of sulfide by Te in Y1Cr13 free-cutting stainless steel. Metall. Res. Technol., 2020, vol. 117(1), p. 107. https://doi.org/10.1051/metal/2019070.

    Article  CAS  Google Scholar 

  14. J.B. Xie, T. Fan, H. Sun, Z.Q. Zeng, and J.X. Fu: Enhancement of impurity, machinability and mechanical properties in Te-treated 0Cr18Ni9 steel. Met. Mater. Int., 2021, vol. 27(6), pp. 1416–27. https://doi.org/10.1007/s12540-019-00545-3.

    Article  CAS  Google Scholar 

  15. A. Mahmutović, A. Nagode, M. Rimac, and D. Mujagić: Modification of the inclusions in austenitic stainless steel by adding tellurium and zirconium. Mater. Tehnol., 2017, vol. 51, pp. 523–28. https://doi.org/10.17222/mit.2015.297.

    Article  CAS  Google Scholar 

  16. P. Shen, Q.K. Yang, D. Zhang, Y.X. Wu, and J.X. Fu: Application of tellurium in free-cutting steels. J. Iron Steel Res. Int., 2018, vol. 25(8), pp. 787–95. https://doi.org/10.1007/s42243-018-0123-2.

    Article  Google Scholar 

  17. Y. Ito, N. Masumitsu, and K. Matsubara: Formation of manganese sulfide in steel. Trans. Iron Steel Inst. Jpn., 1981, vol. 21(7), pp. 477–84. https://doi.org/10.2355/isijinternational1966.21.477.

    Article  Google Scholar 

  18. L. Zheng, A. Malfliet, P. Wollants, B. Blanpain, and M. Guo: Metall. Mater. Trans. B, 2017, vol. 48(5), pp. 2447–58. https://doi.org/10.1007/s11663-017-1050-5.

    Article  CAS  Google Scholar 

  19. H. Yaguchi and N. Onodera: The effect of tellurium on the machinability of AISI 12L14+Te steel. Trans. Iron Steel Inst. Jpn., 1988, vol. 28(12), pp. 1051–59. https://doi.org/10.2355/isijinternational1966.28.1051.

    Article  CAS  Google Scholar 

  20. T. Katoh, S. Abeyama, A. Kimura, and S. Nakamura: A study on resulfurized free-machining steel containing a small amount of tellurium. Denki Seiko, 1982, vol. 53(3), pp. 195–202. https://doi.org/10.4262/denkiseiko.53.195.

    Article  CAS  Google Scholar 

  21. J.R. Rellick, C.J. McMahon, H.L. Marcus, and P.W. Palmberg: The effect of tellurium on intergranular cohesion in iron. Metall. Trans., 1971, vol. 2(5), pp. 1492–94. https://doi.org/10.1007/BF02913388.

    Article  CAS  Google Scholar 

  22. M. Menyhard, B. Rothman, and C.J. McMahon: Observations of segregation and grain-boundary faceting by tellurium and oxygen in iron. Scripta Metall. Mater., 1993, vol. 29(8), pp. 1005–09. https://doi.org/10.1016/0956-716X(93)90168-R.

    Article  CAS  Google Scholar 

  23. C. Sudarshan, S. Jayakumar, K. Vaideki, and C. Sudakar: Te-rich Bi2Te3 thin films by electron−beam deposition: structural, electrical, optical and thermoelectric properties. Thin Solid Films, 2020, vol. 713, p. 138355. https://doi.org/10.1016/j.tsf.2020.138355.

    Article  CAS  Google Scholar 

  24. Y. Yin, Z. Zhang, H. Zhong, C. Shao, X. Wan, C. Zhang, J. Robertson, and Y. Guo: Tellurium nanowire gate-all-around MOSFETs for sub-5 nm applications. ACS Appl. Mater. Interfaces, 2021, vol. 13(2), pp. 3387–396. https://doi.org/10.1021/acsami.0c18767.

    Article  CAS  Google Scholar 

  25. B.R. Aryal, D.R. Ranasinghe, T.R. Westover, D.G. Calvopiña, R.C. Davis, J.N. Harb, and A.T. Woolley: DNA origami mediated electrically connected metal—semiconductor junctions. Nano Res., 2020, vol. 13(5), pp. 1419–426. https://doi.org/10.1007/s12274-020-2672-5.

    Article  CAS  Google Scholar 

  26. M. Sakano, M. Hirayama, T. Takahashi, S. Akebi, M. Nakayama, K. Kuroda, K. Taguchi, T. Yoshikawa, K. Miyamoto, T. Okuda, K. Ono, H. Kumigashira, T. Ideue, Y. Iwasa, N. Mitsuishi, K. Ishizaka, S. Shin, T. Miyake, S. Murakami, T. Sasagawa, and T. Kondo: Radial spin texture in elemental tellurium with chiral crystal structure. Phys. Rev. Lett., 2020, vol. 124(13), p. 136404. https://doi.org/10.1103/PhysRevLett.124.136404.

    Article  CAS  Google Scholar 

  27. G. Gatti, D. Gosálbez-Martínez, S.S. Tsirkin, M. Fanciulli, M. Puppin, S. Polishchuk, S. Moser, L. Testa, E. Martino, S. Roth, P. Bugnon, L. Moreschini, A. Bostwick, C. Jozwiak, E. Rotenberg, G. Di Santo, L. Petaccia, I. Vobornik, J. Fujii, J. Wong, D. Jariwala, H.A. Atwater, H.M. Rønnow, M. Chergui, O.V. Yazyev, M. Grioni, and A. Crepaldi: Radial spin texture of the Weyl fermions in chiral tellurium. Phys. Rev. Lett., 2020, vol. 125(21), p. 216402. https://doi.org/10.1103/PhysRevLett.125.216402.

    Article  CAS  Google Scholar 

  28. G. Qiu, C. Niu, Y. Wang, M. Si, Z. Zhang, W. Wu, and P.D. Ye: Quantum hall effect of weyl fermions in n-type semiconducting tellurene. Nat. Nanotechnol., 2020, vol. 15(7), pp. 585–91. https://doi.org/10.1038/s41565-020-0715-4.

    Article  CAS  Google Scholar 

  29. N. Isik Goktas, A. Sokolovskii, V.G. Dubrovskii, and R.R. LaPierre: Formation mechanism of twinning superlattices in doped GaAs nanowires. Nano Lett., 2020, vol. 20(5), pp. 3344–351. https://doi.org/10.1021/acs.nanolett.0c00240.

    Article  CAS  Google Scholar 

  30. Y. Ma, B. Tang, W. Lian, C. Wu, X. Wang, H. Ju, C. Zhu, F. Fan, and T. Chen: Efficient defect passivation of Sb2Se3 film by tellurium doping for high performance solar cells. J. Mater. Chem. A, 2020, vol. 8(14), pp. 6510–16. https://doi.org/10.1039/D0TA00443J.

    Article  CAS  Google Scholar 

  31. C. Ünlü: Controlling defect state emission in ultra-small sized tellurium doped CdSe nanocrystals via two-phase synthesis method. Opt. Mater., 2019, vol. 89, pp. 361–67. https://doi.org/10.1016/j.optmat.2019.01.050.

    Article  CAS  Google Scholar 

  32. D. Lee, G. Kang, K. Lee, S. Yoon, J. Kim, and S. Han: First-principles calculations on effects of Al and Ga dopants on atomic and electronic structures of amorphous Ge2Sb2Te5. J. Appl. Phys., 2019, vol. 125(3), p. 035701. https://doi.org/10.1063/1.5056185.

    Article  CAS  Google Scholar 

  33. X.H. Li, H.L. Cui, and R.Z. Zhang: First-principles calculations of the effect of Ge content on the electronic, mechanical and acoustic properties of Li17Si4-xGex. Curr. Appl. Phys., 2019, vol. 19(6), pp. 663–69. https://doi.org/10.1016/j.cap.2019.03.014.

    Article  Google Scholar 

  34. J. Kim, H. Kwon, and C.W. Kwon: Temperature dependent phase stability of Ti(C1−xNx) solid solutions using first-principles calculations. Ceram. Int., 2017, vol. 43(1, Part A), pp. 650–57. https://doi.org/10.1016/j.ceramint.2016.09.209.

    Article  CAS  Google Scholar 

  35. X. Zhang, J. Tang, L. Deng, H. Deng, S. Xiao, and W. Hu: Effects of solute size on solid-solution hardening in vanadium alloys: a first-principles calculation. Scripta Mater., 2015, vol. 100, pp. 106–09. https://doi.org/10.1016/j.scriptamat.2015.01.006.

    Article  CAS  Google Scholar 

  36. S. Matsushima, Y. Tanaka, J. Ishii, and K. Obata: First-principles energy band calculation of a (Ca2+, V5+)-doped Y2Ti2O7 pigment. J. Ceram. Soc. Jpn., 2019, vol. 127(11), pp. 793–801. https://doi.org/10.2109/jcersj2.19103.

    Article  CAS  Google Scholar 

  37. W. Adli, A. Zaoui, and M. Ferhat: First-principles calculations of electronic and magnetic properties in ferromagnetic MnSeS, MnSeTe, and MnSePo ternary systems. J. Supercond. Novel Magn., 2016, vol. 29(3), pp. 839–45. https://doi.org/10.1007/s10948-015-3335-8.

    Article  CAS  Google Scholar 

  38. X. Xu, T.F. Chung, S. Hu, Q. Zhu, J. Fu, J.R. Yang, and Q. Tian: Effect of tin microalloying on the microstructure of low-carbon free-machining steels. J. Mater. Res. Technol., 2022, vol. 20, pp. 1172–185. https://doi.org/10.1016/j.jmrt.2022.07.153.

    Article  CAS  Google Scholar 

  39. X. Xu, Z. Yan, Z. Niu, X. Shang, X. Wang, and C. Shang: Hot-deformation characteristics of Al-alloyed δ-ferritic and martensitic dual-phase steel. J. Mater. Res. Technol., 2022, vol. 16, pp. 675–88. https://doi.org/10.1016/j.jmrt.2021.12.034.

    Article  CAS  Google Scholar 

  40. X. Xu, X. Wang, J. Li, Z. Yan, D. Liu, Q. Liu, C. Shang, J. Fu, and P. Shen: Hot workability characteristics of low-density Fe–4Al–1Ni ferritic steel. Mater. Sci. Eng. A, 2021, vol. 799, p. 140257. https://doi.org/10.1016/j.msea.2020.140257.

    Article  CAS  Google Scholar 

  41. G. Kresse and J. Hafner: Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys.: Condens. Matter., 1994, vol. 6, p. 8245. https://doi.org/10.1088/0953-8984/6/40/015.

    Article  CAS  Google Scholar 

  42. G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, vol. 54, p. 11169. https://doi.org/10.1103/PhysRevB.54.11169.

    Article  CAS  Google Scholar 

  43. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, vol. 77, p. 3865. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  44. P.E. Blöchl: Projector augmented-wave method. Phys. Rev. B, 1994, vol. 50, p. 17953. https://doi.org/10.1103/PhysRevB.50.17953.

    Article  Google Scholar 

  45. F. Mehmed and H. Haraldsen: Magnetochemische Untersuchungen. XXVIII. Das magnetische Verhalten der allotropen Modifikationen des Mangan(II)-Sulfids. Z. Anorg. Allg. Chem., 1938, vol. 235(3), pp. 193–200. https://doi.org/10.1002/zaac.19382350305.

    Article  CAS  Google Scholar 

  46. G. Xiao, X. Yang, X. Zhang, K. Wang, X. Huang, Z. Ding, Y. Ma, G. Zou, and B. Zou: A protocol to fabricate nanostructured new phase: B31-type MnS synthesized under high pressure. J. Am. Chem. Soc., 2015, vol. 137(32), pp. 10297–303. https://doi.org/10.1021/jacs.5b05629.

    Article  CAS  Google Scholar 

  47. Y.B. Xue, Y.T. Zhou, D. Chen, and X.L. Ma: Structural stability and electronic structures of (111) twin boundaries in the rock-salt MnS. J. Alloys Compd., 2014, vol. 582, pp. 181–85. https://doi.org/10.1016/j.jallcom.2013.08.073.

    Article  CAS  Google Scholar 

  48. A.J. Panson and W.D. Johnston: The MnTe-MnSe system. J. Inorg. Nucl. Chem., 1964, vol. 26(5), pp. 701–03. https://doi.org/10.1016/0022-1902(64)80312-2.

    Article  CAS  Google Scholar 

  49. W.D. Johnston and D.E. Sestrich: The MnTe-GeTe phase diagram. J. Inorg. Nucl. Chem., 1961, vol. 19(3), pp. 229–36. https://doi.org/10.1016/0022-1902(61)80111-5.

    Article  CAS  Google Scholar 

  50. K. Momma and F. Izumi: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr., 2011, vol. 44(6), pp. 1272–276. https://doi.org/10.1107/S0021889811038970.

    Article  CAS  Google Scholar 

  51. D. Zhang, P. Shen, J.B. Xie, J.M. An, Z.Z. Huang, and J.X. Fu: A method for observing tridimensional morphology of sulfide inclusions by non-aqueous solution electrolytic etching. J. Iron Steel Res. Int., 2019, vol. 26(3), pp. 275–84. https://doi.org/10.1007/s42243-018-0142-z.

    Article  CAS  Google Scholar 

  52. W. Lv, L. Yan, X. Pang, H. Yang, L. Qiao, Y. Su, and K. Gao: Study of the stability of α-Fe/MnS interfaces from first principles and experiment. Appl. Surf. Sci., 2020, vol. 501, p. 144017. https://doi.org/10.1016/j.apsusc.2019.144017.

    Article  CAS  Google Scholar 

  53. C.H. Leung and L.H. Van Vlack: Solubility limits in binary (Ca, Mn) chalcogenides. J. Am. Ceram. Soc., 1979, vol. 62(11–12), pp. 613–16. https://doi.org/10.1111/j.1151-2916.1979.tb12743.x.

    Article  CAS  Google Scholar 

  54. C.H. Griffiths: Cubic manganous telluride. J. Mater. Sci., 1978, vol. 13(3), pp. 513–18. https://doi.org/10.1007/BF00541800.

    Article  CAS  Google Scholar 

  55. R. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A, 1976, vol. 32(5), pp. 751–67. https://doi.org/10.1107/S0567739476001551.

    Article  Google Scholar 

  56. M.H.F. Sluiter and Y. Kawazoe: Site preference of ternary additions in Ni3Al. Phys. Rev. B, 1995, vol. 51, pp. 4062–73. https://doi.org/10.1103/PhysRevB.51.4062.

    Article  CAS  Google Scholar 

  57. D. SrivastavaAnurag: Dhar, Elastic and thermodynamic properties of divalent transition metal carbides MC (M = Ti, Zr, Hf, V, Nb, Ta). Can. J. Phys., 2012, vol. 90(4), pp. 331–38. https://doi.org/10.1139/p2012-021.

    Article  CAS  Google Scholar 

  58. K. Jacob, S. Raj, and L. Rannesh: Vegard’s law: a fundamental relation or an approximation? Int. J. Mater. Res., 2007, https://doi.org/10.3139/146.101545.

    Article  Google Scholar 

Download references

Acknowledgments

Xiangyu Xu gratefully acknowledges support from the National Natural Science Foundation of China (Youth Program No. 52104335) and Shanghai “Super Postdoctoral” Incentive Plan (Grant No. 2020194). Professor Jianxun Fu acknowledges support from the National Natural Science Foundation of China (General Program Nos. 52074179 and 51874195). We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

XX: conceptualization, investigation, formal analysis, writing—original draft, writing—review & editing, funding acquisition. YL: investigation, formal analysis. ZW: investigation, validation. XZ: investigation. QT: investigation. JF: resources, funding acquisition. XW: resources.

Corresponding author

Correspondence to Jianxun Fu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Li, Y., Wang, Z. et al. Tellurium Doping in MnS Inclusions and Corresponding Modification Effect: Experimental and First-Principles Study. Metall Mater Trans A 54, 4558–4571 (2023). https://doi.org/10.1007/s11661-023-07189-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07189-4

Navigation