Skip to main content
Log in

The Effect of Aluminum on the Divorced Eutectic Transformation of MnS Inclusions

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The mechanical properties of steels can be deteriorated by the formation of type II sulfide inclusions. The addition of alloying elements Al, C, and Si is generally considered to promote the transition from type II to type III sulfides. However, the mechanism of how alloying elements, especially Al, affect the transition is still unclear. In this work, the effect of aluminum on the divorced eutectic transformation of MnS inclusions was investigated. The research results show that most sulfides are type II MnS in micro-alloyed YF45MnV steel with Al concentration lower than 0.027 wt pct. The sulfides in the steel with Al concentration higher than 0.038 wt pct are type III MnS. The increase of aluminum content promotes the transition of sulfide morphology from the type II to type III, but increasing cooling rate can have the opposite effect. It is also found that an increase in Al content can significantly affect the equilibrium dissolved oxygen content and surface tension, but has little influence on the activity coefficient of S, precipitation temperature, initial S content in liquid steel, and solid fraction of the precipitation of MnS. High Al content can increase the interface energy between the liquid steel and MnS and promote the divorced eutectic transformation of MnS and form type III MnS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. [1]Y.J. Xia, F.M. Wang, J.L. Wang, and G.Z. Li: Int. J. Miner. Metall. Mater., 2011, vol. 18, pp. 562-69.

    Article  CAS  Google Scholar 

  2. [2]X.Y. Mao, X.M. Zhao, Z. Z. Wang, L. Cai, and Y.Q. Bai: Philos. Mag. Lett., 2014, vol. 94, pp. 135-40.

    Article  CAS  Google Scholar 

  3. [3]Z.B. Yang, F.M. Wang, S. Wang, and B. Song: Steel Res. Int., 2008, vol. 79, pp. 390-95.

    Article  CAS  Google Scholar 

  4. [4]L. Z. Jiang, K. Cui and H. Hänninen: J. Mater. Process. Technol., 1996, vol. 58, pp. 160-65.

    Article  Google Scholar 

  5. [5]Y. Kim, H. Kim, S. Y. Shin, K. Rhee, S. B. Ahn, D. L. Lee, N. J. Kim and S. Lee: Metall. Mater. Trans. A, 2012, vol. 43, pp. 882-92.

    Article  Google Scholar 

  6. [6]C. E. Sims and F. B. Dahle: Trans. AFS, 1938, vol. 46, pp. 65-79.

    Google Scholar 

  7. [7]C. E. Sims: Trans. AIME, 1959, vol. 215, pp. 367-91.

    CAS  Google Scholar 

  8. [9]L. K. Bigelow and M. C. Flemings: Metall. Trans. B, 1975, vol. 6, pp. 275-83.

    Article  Google Scholar 

  9. [10]M. Imagumbai: ISIJ Int., 1994, vol. 34, pp. 896-991.

    Article  CAS  Google Scholar 

  10. C. E. Sims: Proc. Elec. Furnace Steel AIME, 1959, vol. 17, pp. 104-24.

    CAS  Google Scholar 

  11. [13]D. C. Hilty and W. Crafts: J Met., 1954, vol. 8, pp. 959-69.

    Google Scholar 

  12. [8]W. Dahl, H. Hengstenberg and C. Duren: Stahl und Eisen, 1966, vol. 86, pp. 782-95.

    Google Scholar 

  13. [11]K. Oikawa, H. Ohtanio, K. Ishida, T. Nishizawa: ISIJ Int., 1995, vol. 35, pp. 402-08.

    Article  Google Scholar 

  14. [14]K. Oikawa, K. Ishida and T. Nishizawa: ISIJ Int., 1997, vol. 37, pp. 332-38.

    Article  CAS  Google Scholar 

  15. [15]K. Isobe, Y. Kusano and H. Maede: Tetsu-to-hagané, 1994, vol. 80, pp. 890-95.

    Article  CAS  Google Scholar 

  16. [16]Y. J. Xia, F. M. Wang, J. L. Wang and J. Zhao: Chin. J. Eng., 2010, vol. 32, pp. 1271-76.

    CAS  Google Scholar 

  17. [17]J. L. Lu, G. G. Cheng, L. Chen, G. J. Xiong and L. S. Wang: ISIJ Int., 2018,Vol. 58, pp. 1307–15.

    Article  CAS  Google Scholar 

  18. [18]Q. S. Zhang, Y. Min, H. S. Xu and C. J. Liu: ISIJ Int., 2018, Vol. 58, pp. 1250–56.

    Article  CAS  Google Scholar 

  19. [19]C. E. Sims: Metals Transactions, 1949, vol. 185, pp. 814-24.

    Google Scholar 

  20. [20]R. Diederichs and W. Bleck: Steel Res Int., 2006, vol. 77, pp. 202-09.

    Article  CAS  Google Scholar 

  21. [21]R. Diederichs, R. Bülte and G. Pariser: Steel Res Int., 2006, vol. 77, pp.256-65.

    Article  CAS  Google Scholar 

  22. [22]I. Yoichi, M. Noriyuki and M. Kaichi: Tetsu-to-Hagane, 1982, vol. 68, pp.1569-76.

    Article  Google Scholar 

  23. [23]H. Fredriksson and M. Hillert: J Iron Steel Inst., 1971, vol. 209, pp. 109-13.

    CAS  Google Scholar 

  24. [24]H. Zhang, G. Feng, X, Liu, B. Wang and X. Liu: Metals, 2020, vol.10, pp. 570.

    Article  CAS  Google Scholar 

  25. [25]P. P. Mohla and J. Beech: J Iron Steel Inst., 1969, vol. 207, pp. 177-81.

    CAS  Google Scholar 

  26. [26]T. J. Baker and J. Charles: J Iron Steel Inst., 1972, vol. 210, pp. 702-06.

    CAS  Google Scholar 

  27. [27]M. Imagumbai: ISIJ Int., 1994, vol. 34, pp.896-905.

    Article  CAS  Google Scholar 

  28. [28]H. Liu, D. Hu and J. Fu: Materials, 2019, vol.12, pp.2028.

    Article  CAS  Google Scholar 

  29. [29]M. Hillert and L. I. Staffansson: Metallurgical Transactions B, 1976, vol. 7, pp. 203-11.

    Article  Google Scholar 

  30. [30]H. Mitsui, K. Oikawa, I. Ohnuma and P. Kainuma: ISIJ Int., 2002, vol. 42, pp. 1297-302.

    Article  CAS  Google Scholar 

  31. [31]K. Oikawa, S.I. Sumi, and K. Ishida: Z. Metallkd., 1999, vol. 90, pp. 13-18.

    CAS  Google Scholar 

  32. [32]E. Scheil: Zeitschrift für Metallkunde, 1942, vol. 34, pp.70-72.

    Google Scholar 

  33. [33]Y. Ueshima, S. Mizoguchi, T. Matsumiya and H. Kajioka: Metallurgical Transactions B, 1986, vol. 17, pp. 845-59.

    Article  Google Scholar 

  34. [34]A. Ghosh: ISIJ Int., 2009, vol. 49, pp.1819-27.

    Article  Google Scholar 

  35. [35]D. You, S. K. Michelic, C. Bernhard, D. Loder and G. Wieser: ISIJ Int., 2016, vol. 56, pp. 1770-78.

    Article  CAS  Google Scholar 

  36. [36]J. H. Shin and J. H. Park. Metall. Mater. Trans. B, 2020, vol.51, pp. 1211-24.

    Article  Google Scholar 

  37. [37]H.D. Brody and M.C. Flemings: Trans. TMS-AIME, 1966, vol. 236, pp. 615-24.

    CAS  Google Scholar 

  38. [38]V. R. Voller and C. Beckermann: Metall. Mater. Trans. A, 1999, vol. 30, pp. 2183-89.

    Article  CAS  Google Scholar 

  39. [39]T.W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12A, pp. 965-71.

    Article  Google Scholar 

  40. [40]Y. M. Won and B. G. Thomas: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1755–67.

    Article  CAS  Google Scholar 

  41. [44]Z. T. Ma and D. Jankel: ISIJ Int., 1998, Vol. 38, pp. 46-52.

    Article  CAS  Google Scholar 

  42. [42]S. Luo, B. Y. Wang, Z. H. Wang, D. B Jiang, W. L. Wang and M. Y. Zhu: ISIJ Int., 2017, Vol. 57, pp. 2000–2009.

    Article  CAS  Google Scholar 

  43. D. You, C. Bernhard, S. Michelic, G. Wieser, and P. Presoly: International Conference on Materials, Processing and Product Engineering, 2015.

  44. [45]E. T. Turdogan, S. Ignatowicz and J. Pearson: Journal of the Iron and Steel Institute, 1955, vol. 193, pp. 349-54.

    Google Scholar 

  45. [46]Z. Liu, J. Wei and K. Cai: ISIJ Int., 2002, vol. 42, pp. 958–63.

    Article  CAS  Google Scholar 

  46. X. Huang: Metallurgical Industry Press, 2000, p. 131.

  47. J. Zhang: Metallurgical Industry Press, 2004, pp. 318–21.

  48. [47]T. Matsumiya, H. Kajioka, S. Mizoguchi, Y. Ueshima, and H. Esaka: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 873–82.

    Article  Google Scholar 

  49. [48]Y. Kawshita and H. Suito: ISIJ Int., 1995, vol. 35, pp. 1468-76.

    Article  Google Scholar 

  50. [50]B. L. Bramfitt: Metall. Trans., 1970, vol. 1, pp. 1987-95.

    Article  CAS  Google Scholar 

  51. [51]D. Turnbull and B. Vonnegut: Industrial and Engineering Chemistry, 1952, vol. 44, pp. 1292-94.

    Article  CAS  Google Scholar 

  52. [52]J. D. Hunt and K. A. Jackson: Trans. TMS-AIME, 1967, vol. 239, pp. 864-67.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the National Natural Science Fund (Grant No. 52074001, U1560109, 52074003) for sponsoring this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 2, 2020; accepted January 12, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Li, J., Fan, D. et al. The Effect of Aluminum on the Divorced Eutectic Transformation of MnS Inclusions. Metall Mater Trans B 52, 1118–1131 (2021). https://doi.org/10.1007/s11663-021-02085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02085-x

Navigation