Skip to main content
Log in

Liquid Metal Corrosion of Mo and TZM in Al Melt: Mechanism and Kinetics

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Liquid metal corrosion of Mo and TZM (typically Mo with 0.5 pct Ti, 0.1 pct Zr, 0.02 pct C) in aluminum melt was investigated at temperatures between 680 °C and 720 °C for 0.17 to 10 hours using a dynamic immersion test with rotating specimen. A layer of intermetallic phases identified as Al12Mo, Al5Mo, Al22Mo5, and Al8Mo3 using energy-dispersive X-ray spectroscopy (EDX) is formed. Layer growth was found to be reaction-controlled for the first 8 hours with a growth constant of 2.0 × 10−8 m/s for Mo in Al at 700 °C. A solubility of 0.23 wt pct Mo in Al at 700 °C and a corresponding dissolution-rate constant of 3.3 × 10−5 m/s are found. For processes where the melt is permanently renewed, a more severe mass loss by dissolution is expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. M. Yan and Z. Fan: J. Mater. Sci., 2001, vol. 36, pp. 285–95.

    Article  CAS  Google Scholar 

  2. S. Shankar and D. Apelian: Metall. Mater. Trans. B, 2002, vol. 33, pp. 465–76.

    Article  Google Scholar 

  3. Q. Han, C. Vian, and J. Good: Int. J. Metalcast., 2020, vol. 13, pp. 417–22.

    Google Scholar 

  4. Y. Zhu, D. Schwam, J.F. Wallace, and S. Birceanu: J. Mater. Sci. Eng. A, 2004, vol. 379, pp. 420–31.

    Article  Google Scholar 

  5. E.K. Tentardini, A.O. Kunrath, C. Aguzzoli, M. Castro, J.J. Moore, and I.J. Baumvol: Surf. Coat. Technol., 2008, vol. 202, pp. 3764–71.

    Article  CAS  Google Scholar 

  6. X. Zhang and W. Chen: Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 1715–31.

    Article  CAS  Google Scholar 

  7. H. Warlimont and W. Martienssen: Springer Handbook of Materials Data, Springer, Cham, 2018, pp. 161–66.

    Book  Google Scholar 

  8. V.N. Eremenko, Y.V. Natanzon, and V.I. Dybkov: Mater. Sci., 1985, vol. 20, pp. 501–07.

    Article  Google Scholar 

  9. R. Burman: Refractory metals and their industrial applications: A symposium sponsored by ASTM Committee B-10 on Reactive and Refractory Metals and Alloys, Ed. by R. E. Smallwood, ASTM, Philadelphia, PA, 1984, pp. 5–17.

  10. C. Herrmann, H. Pries, and G. Hartmann: Energie- und ressourceneffiziente Produktion von Aluminiumdruckguss, Springer, Berlin, 2013, pp. 69–71.

    Book  Google Scholar 

  11. M. Nanko, A. Kitahara, T. Ogura, H. Kamata, and T. Maruyama: Intermetallics, 2001, vol. 9, pp. 637–46.

    Article  CAS  Google Scholar 

  12. K. Niinobe, I. Sumi, and N. Takeshita: J. Jpn. Inst. Met., 2008, vol. 72, pp. 457–63.

    Article  CAS  Google Scholar 

  13. N. Tunca and R.W. Smith: Metall. Trans. A, 1989, vol. 20, pp. 825–36.

    Article  Google Scholar 

  14. H.F. Luo, J. Wu, Z. Liu, and W.P. Chen: Appl. Mech. Mater., 2012, vol. 155–156, pp. 969–73.

    Article  Google Scholar 

  15. A. Wiltner, B. Klöden, F. Dittrich, T. Weißgärber, B. Kieback, J. M. Schreiber, T. J. Eden, J. K. Potter, and I. Smid: 18th Plansee Seminar 2013, Ed. by Plansee, 2013, pp. 411–24.

  16. L. R. Kelman, W. D. Wilkinson, and F. L. Yaggee: Resistance Of Materials To Attack By Liquid Metals, Office of Scientific & Technical Information Technical Reports, Lemont, Illinois, 1950.

  17. E. C. Miller: Liquid-metals Handbook, Ed. by R. N. Lyon, 2nd ed., Washington, D.C., 1952, pp. 144–83.

  18. K. Bouché, F. Barbier, and A. Coulet: J. Mater. Sci. Eng. A, 1998, vol. 249, pp. 167–75.

    Article  Google Scholar 

  19. V.N. Yeremenko, Y.V. Natanzon, and V.I. Dybkov: J. Mater. Sci., 1981, vol. 16, pp. 1748–56.

    Article  Google Scholar 

  20. W.D. Manly: Corrosion, 1956, vol. 12, pp. 46–52.

    Article  Google Scholar 

  21. V.N. Yeremenko, Y.V. Natanzon, and V.I. Dybkov: J. Less-Common Met., 1976, vol. 50, pp. 29–48.

    Article  Google Scholar 

  22. V.I. Dybkov: J. Mater. Sci., 1990, vol. 25, pp. 3615–33.

    Article  CAS  Google Scholar 

  23. A. d. S. Brasunas and W. D. Manly: Static Liquid-Metal Corrosion: Interim Report Covering the Period July 1949-September 1952, Oak Ridge, Tennessee, 1954.

  24. N. Tunca, G.W. Delamore, and R.W. Smith: Metall. Trans. A, 1990, vol. 21, pp. 2919–28.

    Article  Google Scholar 

  25. H. Xiao, W. Chen, and Z. Liu: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 2320–26.

    Article  CAS  Google Scholar 

  26. V.I. Dybkov: J. Mater. Sci., 1986, vol. 21, pp. 3078–84.

    Article  CAS  Google Scholar 

  27. V.I. Dybkov: Solid State Reaction Kinetics, IPMS Publications, Kyïv, 2013, pp. 16–19.

    Google Scholar 

  28. V. Lampe, H. Roos, and M. Svensson: Mater. Corros., 1977, vol. 28, pp. 226–32.

    Article  CAS  Google Scholar 

  29. U.R. Evans: The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications, Arnold, London, 1976, pp. 819–45.

    Google Scholar 

  30. B.E. Deal and A.S. Grove: J. Appl. Phys. (Melville, NY, U. S.), 1965, vol. 36, pp. 3770–78.

    CAS  Google Scholar 

  31. B. Parditka, H. Zaka, G. Erdélyi, G.A. Langer, M. Ibrahim, G. Schmitz, Z. Balogh-Michels, and Z. Erdélyi: Scripta Mater., 2018, vol. 149, pp. 36–39.

    Article  CAS  Google Scholar 

  32. V.I. Dybkov: Solid State Reaction Kinetics, IPMS Publications, Kyïv, 2013.

    Google Scholar 

  33. V.I. Dybkov: Solid State Reaction Kinetics, IPMS Publications, Kyïv, 2013, pp. 34–36.

    Google Scholar 

  34. V.I. Dybkov: J. Mater. Sci., 1986, vol. 21, pp. 3085–90.

    Article  CAS  Google Scholar 

  35. V.I. Dybkov: Solid State Reaction Kinetics, IPMS Publications, Kyïv, 2013, pp. 123–28.

    Google Scholar 

  36. A. Bouayad, C. Gerometta, A. Belkebir, and A. Ambari: J. Mater. Sci. Eng. A, 2003, vol. 363, pp. 53–61.

    Article  Google Scholar 

  37. M. S. Sidhu: Thesis (PhD), Canterbury, 2012.

  38. V.I. Dybkov: Solid State Reaction Kinetics, IPMS Publications, Kyïv, 2013, p. 142.

    Google Scholar 

  39. M. Eumann, G. Sauthoff, and M. Palm: Int. J. Mater. Res., 2006, vol. 97, pp. 1502–11.

    Article  CAS  Google Scholar 

  40. L.L. Bircumshaw and A.C. Riddiford: Q. Rev. Chem. Soc., 1952, vol. 6, pp. 157–85.

    Article  CAS  Google Scholar 

  41. R. J. Cash, R. M. Fisher, and M. R. Core: Compatibility studies of several molten uranium and thorium alloys in niobium, tantalum, and yttrium, Ames Laboratory Technical Reports, 1964.

  42. J.C. Schuster and H. Ipser: Metall. Trans. A, 1991, vol. 22, pp. 1729–36.

    Article  Google Scholar 

  43. N. Saunders: J. Phase Equilib., 1997, vol. 18, pp. 370–78.

    Article  CAS  Google Scholar 

  44. D.M. Cupid, O. Fabrichnaya, F. Ebrahimi, and H.J. Seifert: Intermetallics, 2010, vol. 18, pp. 1185–96.

    Article  CAS  Google Scholar 

  45. H. Okamoto: J. Phase Equilib. Diffus., 2010, vol. 31, pp. 492–93.

    Article  CAS  Google Scholar 

  46. F. van Loo: Prog. Solid State Chem., 1990, vol. 20, pp. 47–99.

    Article  Google Scholar 

  47. V.I. Dybkov: Powder Metall. Met. Ceram, 1996, vol. 35, pp. 355–59.

    Article  Google Scholar 

  48. V.I. Dybkov: Solid State Reaction Kinetics, IPMS Publications, Kyïv, 2013, pp. 57–61.

    Google Scholar 

  49. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson: APL Mater., 2013, vol. 1, pp. 1–11.

    Article  Google Scholar 

  50. V.I. Dybkov: J. Mater. Sci., 1987, vol. 22, pp. 4233–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Authors would like to thank “Hans Geiger Stiftung” for supporting the work financially. This paper is dedicated to Prof. R.F. Singer, who initiated this study and passed away before it was published. The Authors thank Prof. R. Singer for his support and valuable discussions.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Ankenbrand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

By normalizing all mass losses to an immersion depth of 39 mm (≙ immersed area à of 13.04 cm2), the effect of different immersion depths and thus varying areas of attack can be eliminated (see Eqs. [A1] through [A3]). The volume of the growing layer is proportional to the immersed area A and thus the mass of Mo in the layer can be normalized by Eq. [A1].

$$\begin{array}{c}{\widetilde{m}}_{\text{layer}}^{\text{Mo}}=\frac{{m}_{\text{layer}}^{\text{Mo}}}{A}\cdot \tilde{A}\end{array}$$
(A1)
$${\widetilde{m}}_{\text{melt}}^{\text{Mo}}=\left\{\begin{array}{cc}{m}_{\text{melt}}^{\text{Mo}},& c\ge {c}_{\text{s}}\\ {c}_{\text{s}}-\left({c}_{\text{s}}\cdot {\text{e}}^{\frac{\tilde{A}}{A}\cdot \text{ln}\left(1-\frac{c}{{c}_{\text{s}}}\right)}\right){\cdot m}_{\text{melt}}^{\text{Al}},& c<{c}_{\text{s}}\end{array}\right.$$
(A2)
$${\widetilde{m}}_{\text{loss}}^{\text{Mo}}=({m}_{\text{loss}}^{\text{Mo}}-{m}_{\text{melt}}^{\text{Mo}})\frac{\tilde{A} }{A}+{\widetilde{m}}_{\text{melt}}^{\text{Mo}}$$
(A3)

For the dissolved material in the melt, the normalized value cannot be calculated exactly. Two cases can be distinguished (Eq. [A2]). When the measured concentration of Mo in the melt is equal or greater than the maximal solubility, the melt is saturated and the influence of immersion depth on dissolved material is negligibly small. When the concentration of Mo in the melt is smaller than the maximal solubility, the normalized value can be derived from Eq. [9]:

$$\begin{array}{c}\text{ln}\left(\frac{{c}_{\text{s}}}{{c}_{\text{s}}-c}\right)= {k}_{\text{dis}}\cdot \frac{A}{V}t\end{array}$$
(A4)
$$\begin{array}{c}\frac{{k}_{\text{dis}}}{V}t=\frac{{\text{ln}}\left(\frac{{c}_{\text{s}}}{{c}_{\text{s}}-c}\right)}{{A}}\end{array}$$
(A5)

When immersing the normalized area Ã, Eq. [8] yields the concentration \(\widetilde{c}\):

$$\widetilde{c}= {c}_{\text{s}}\left(1-{e}^{- \frac{{k}_{\text{dis}}\tilde{A}}{V}t}\right)$$
(A6)

Inserting of Eq. [A6] yields

$$\widetilde{c}= {c}_{\text{s}}\left(1-{e}^{- \frac{{\text{ln}}\left(\frac{{c}_{\text{s}}}{{c}_{\text{s}}-c}\right){\tilde{A}}}{A}}\right)$$
(A7)

and applying of Eq. [18]

$${\widetilde{m}}_{\text{melt}}^{\text{Mo}}={c}_{\text{s}}\left(1-{e}^{ \frac{\tilde{A}}{A}{\text{ln}}\left(1-\frac{c}{{c}_{\text{s}}}\right)}\right)\cdot {m}_{\text{melt}}^{\text{Al}}.$$
(A8)

For the total mass loss, the contribution of dissolution and layer growth must be normalized separately (Eq. [A3]). The measured mass dissolved in the melt is subtracted from the total mass loss, leaving the mass in the layer that is normalized with Eq. [A1]. Afterward, the material dissolved in the melt, normalized with Eq. [A2], is added. For some samples with long dipping times (6, 8, 10 hours), the composition of the melt was not measured. Here, it was assumed that the melt is saturated with the maximum solubility.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ankenbrand, L., Lohmüller, A. Liquid Metal Corrosion of Mo and TZM in Al Melt: Mechanism and Kinetics. Metall Mater Trans A 54, 4671–4687 (2023). https://doi.org/10.1007/s11661-023-07185-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07185-8

Navigation