Skip to main content
Log in

Role of GP II Zones and Metastable -ɳ′ Precipitates on the Environmentally Assisted Cracking Behavior of AA 7050 Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The electrochemical kinetics of matrix precipitates -metastable MgZn2 (ɳ′) and GP II zones towards environmentally assisted cracking (EAC) have been investigated using cathodic polarization tests and slow strain rate tests. Retrogression and re-aging treatment (RRA) and modified interrupted aging treatment (MA3) are employed to produce high fractions of ɳ′ and GP II zones respectively. The higher ɳ′ fraction resulted in a three times higher hydrogen evolution on the alloy, thus decreasing the elongation values in the cathodically charged and uncharged 3.5 wt pct NaCl solution. Furthermore, the gauge surface of the ɳ′ dominated alloy showed pitting along the grain boundaries in 3.5 wt pct NaCl solution and a high amount of sub grain formation when tested in cathodically charged solution. On the other hand, long transgranular cracks were observed in the case of the alloy dominated with GP II zones, suggesting that the higher coherency of GP II zones promoted the formation of planar slip events. To correlate the effect of hydrogen on dislocation generation, dislocation densities were calculated using XRD peak broadening methodology. It suggested that the cathodic charging resulted in a 1.5 times higher dislocation density for the alloy with a higher volume fraction of GP II zones. Such a variation caused a higher drop in tensile strength for the case of the alloy having higher GP II zones in the cathodically charged condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A.K. Mukhopadhyay, K.S. Prasad, V. Kumar, G.M. Reddy, S.V. Kamat, and V.K. Varma: Mater. Sci. Forum, 2006, vol. 519, pp. 315–20.

    Article  Google Scholar 

  2. M.B. Kannan and V.S. Raja: Adv. Mater. Sci., 2007, vol. 7, pp. 21–26.

    Google Scholar 

  3. M.C. Reboul and B. Baroux: Mater. Corros., 2011, vol. 62, pp. 215–33.

    Article  CAS  Google Scholar 

  4. M.B. Kannan, V.S. Raja, A.K. Mukhopadhyay, and P. Schmuki: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3257–62.

    Article  CAS  Google Scholar 

  5. A. Azarniya, A.K. Taheri, and K.K. Taheri: J. Alloys Compd., 2019, vol. 781, pp. 945–83.

    Article  CAS  Google Scholar 

  6. A.K. Mukhopadhyay: Mater. Sci. Forum, 2012, vol. 710, pp. 50–65.

    Article  CAS  Google Scholar 

  7. D.A. Hardwick, A.W. Thompson, and I.M. Bernstein: Metall. Trans. A, 1983, vol. 14A, pp. 2517–26.

    Article  CAS  Google Scholar 

  8. M. Ajay Krishnan and V.S. Raja: Corros. Sci., 2016, vol. 109, pp. 94–100.

    Article  Google Scholar 

  9. L.L. Liu, Q.L. Pan, X.D. Wang, and S.W. Xiong: J. Alloys Compd., 2018, vol. 735, pp. 261–76.

    Article  CAS  Google Scholar 

  10. M. Puiggali, A. Zielinski, J.M. Olive, E. Renauld, D. Desjardins, and M. Cid: Corros. Sci., 1998, vol. 40, pp. 805–19.

    Article  CAS  Google Scholar 

  11. S.P. Knight, N. Birbilis, B.C. Muddle, A.R. Trueman, and S.P. Lynch: Corros. Sci., 2010, vol. 52, pp. 4073–80.

    Article  CAS  Google Scholar 

  12. K.R. Cooper and R.G. Kelly: Corros. Sci., 2007, vol. 49, pp. 2636–62.

    Article  CAS  Google Scholar 

  13. M. Dadfarnia, A. Nagao, S. Wang, M.L. Martin, B.P. Somerday, and P. Sofronis: Int. J. Fract., 2015, vol. 196, pp. 223–43.

    Article  CAS  Google Scholar 

  14. G.A. Young and J.R. Scully: Acta Mater., 1998, vol. 46, pp. 6337–49.

    Article  CAS  Google Scholar 

  15. J.R. Scully, G.A. Young, and S.W. Smith: Mater. Sci. Forum, 2000, vol. 331, pp. 1583–600.

    Article  Google Scholar 

  16. L. Oger, B. Malard, G. Odemer, L. Peguet, and C. Blanc: Mater. Des., 2019, vol. 180, p. 107901.

    Article  CAS  Google Scholar 

  17. J. Albrecht, I.M. Bernstein, and A.W. Thompson: Metall. Trans. A, 1982, vol. 13A, pp. 811–20.

    Article  Google Scholar 

  18. A.K. Vasudevan and K. Sadananda: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 405–14.

    Article  Google Scholar 

  19. S. Bhuiyan, H. Toda, Z. Peng, S. Hang, K. Horikawa, K. Uesugi, A. Takeuchi, N. Sakaguchi, and Y. Watanabe: Mater. Sci. Eng. A, 2016, vol. 655, pp. 221–28.

    Article  CAS  Google Scholar 

  20. M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 2739–45.

    Article  CAS  Google Scholar 

  21. H. Su, H. Toda, K. Shimizu, K. Uesugi, and A. Takeuchi: Acta Mater., 2019, vol. 176, pp. 96–108.

    Article  CAS  Google Scholar 

  22. Y. George and J.R. Scully: in Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions, 2003, pp. 115–30.

  23. T. Tsuru, M. Yamaguchi, K. Ebihara, M. Itakura, Y. Shiihara, K. Matsuda, and H. Toda: Comput. Mater. Sci., 2018, vol. 148, pp. 301–06.

    Article  CAS  Google Scholar 

  24. Y. Xu, H. Toda, K. Shimizu, Y. Wang, and B. Gault: Acta Mater., 2022, vol. 236, p. 118110.

    Article  CAS  Google Scholar 

  25. S. Shukla, B.N. Jaya, and V.S. Raja: Corros. Sci., 2022, vol. 201, p. 110281.

    Article  CAS  Google Scholar 

  26. S. Shukla, B.N. Jaya, and V.S. Raja: J. Alloys Compd., 2023, vol. 947, p. 169596.

    Article  CAS  Google Scholar 

  27. N.C. Danh, K. Rajan, and W. Wallace: Metall. Trans. A, 1983, vol. 14A, pp. 1843–50.

    Article  Google Scholar 

  28. A. Somoza, A. Dupasquier, I.J. Polmear, P. Folegati, and R. Ferragut: Phys. Rev. B, 2000, vol. 61, pp. 14454–4463.

    Article  CAS  Google Scholar 

  29. R.N. Lumley, I.J. Polmear, and A.J. Morton: Mater. Sci. Technol., 2013, vol. 19, pp. 1483–490.

    Article  Google Scholar 

  30. J.K. Park: Mater. Sci. Eng., 1988, vol. 103, pp. 223–31.

    Article  Google Scholar 

  31. M. Ajay Krishnan, V.S. Raja, S. Shukla, and S.M. Vaidya: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 2487–98.

    Article  Google Scholar 

  32. M.B. Kannan and V.S. Raja: J. Mater. Sci., 2006, vol. 41, pp. 5495–499.

    Article  CAS  Google Scholar 

  33. S. Lynch: Corros. Rev., 2012, vol. 30, pp. 105–23.

    CAS  Google Scholar 

  34. Z. Arechabaleta, P. Van Liempt, and J. Sietsma: Acta Mater., 2016, vol. 115, pp. 314–23.

    Article  CAS  Google Scholar 

  35. A.R. Bushroa, R.G. Rahbari, H.H. Masjuki, and M.R. Muhamad: Vacuum, 2012, vol. 86, pp. 1107–112.

    Article  CAS  Google Scholar 

  36. G.K. Williamson and R.E. Smallman: Philos. Mag., 1956, vol. 1, pp. 34–46.

    Article  CAS  Google Scholar 

  37. A. Ul-Hamid: Corros. Prev. Control, 2001, vol. 48, pp. 151–59.

    CAS  Google Scholar 

  38. L.K. Berg, J. Gjoønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, and L.R. Wallenberg: Acta Mater., 2001, vol. 49, pp. 3443–451.

    Article  CAS  Google Scholar 

  39. G. Sha and A. Cerezo: Acta Mater., 2004, vol. 52, pp. 4503–516.

    Article  CAS  Google Scholar 

  40. T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux: Acta Mater., 2010, vol. 58, pp. 4814–826.

    Article  CAS  Google Scholar 

  41. J.Z. Liu, J.H. Chen, X.B. Yang, S. Ren, C.L. Wu, H.Y. Xu, and J. Zou: Scr. Mater., 2010, vol. 63, pp. 1061–064.

    Article  CAS  Google Scholar 

  42. W. Yang, S. Ji, Q. Zhang, and M. Wang: Mater. Des., 2015, vol. 85, pp. 752–61.

    Article  CAS  Google Scholar 

  43. W. Yang, S. Ji, M. Wang, and Z. Li: J. Alloys Compd., 2014, vol. 610, pp. 623–29.

    Article  CAS  Google Scholar 

  44. Y. Chen, M. Weyland, and C.R. Hutchinson: Acta Mater., 2013, vol. 61, pp. 5877–894.

    Article  CAS  Google Scholar 

  45. K. Sadananda and A.K. Vasudevan: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 279–95.

    Article  Google Scholar 

  46. A. Thakur, R. Raman, and S.N. Malhotra: Mater. Chem. Phys., 2007, vol. 101, pp. 441–47.

    Article  CAS  Google Scholar 

  47. I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, and K.E. Nygren: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 2323–341.

    Article  Google Scholar 

  48. D. Wang and Z.Y. Ma: J. Alloys Compd., 2009, vol. 469, pp. 445–50.

    Article  CAS  Google Scholar 

  49. L. Oger, M.C. Lafouresse, G. Odemer, L. Peguet, and C. Blanc: Mater. Sci. Eng. A, 2017, vol. 706, pp. 126–35.

    Article  CAS  Google Scholar 

  50. L. Christodoulou and H.M. Flower: Acta Metall., 1980, vol. 28, pp. 481–87.

    Article  CAS  Google Scholar 

  51. B.L. Ou, J.G. Yang, and M.Y. Wei: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1760–773.

    Article  CAS  Google Scholar 

  52. H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng. A, 1994, vol. 176, pp. 191–202.

    Article  CAS  Google Scholar 

  53. G.M. Bond, I.M. Robertson, and H.K. Birnbaum: Acta Metall., 1987, vol. 35, pp. 2289–296.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. A. Venugopal, Vikram Sarabhai Space Centre, India for providing the alloy. This study is supported by the Science and Engineering Research Board, Department of Science and Technology, Government of India; under the Project No CRB/2018/000549.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Raja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, S., Jaya, B.N. & Raja, V.S. Role of GP II Zones and Metastable -ɳ′ Precipitates on the Environmentally Assisted Cracking Behavior of AA 7050 Alloy. Metall Mater Trans A 54, 4481–4497 (2023). https://doi.org/10.1007/s11661-023-07181-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07181-y

Navigation