Skip to main content
Log in

Ductile Ti–Ni Alloys With an Equiaxed Microstructure Designed by Tuning the Precipitation Pathway of Ti2Ni

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The abnormal precipitation of Ti2Ni arising from compositional inhomogeneity leads to the formation of α-laths in powder metallurgy Ti–Ni alloys. This exacerbates the detrimental effect of eutectoid on ductility. Herein, we have developed a uniform Ni-coated Ti powder to obtain rapid compositional homogeneity during sintering process. This rectified the abnormal eutectoid reaction pathway, enabling us to obtain fully equiaxed α-Ti grains. Consequently, the equiaxed microstructure effectively counteracted the degradation in ductility caused by brittle eutectoid.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Z.Z. Fang, J.D. Paramore, P. Sun, K.S.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, and M. Free: Int. Mater. Rev, 2017, vol. 63, pp. 459–07.

    Google Scholar 

  2. H. Liu, D.P. Bishop, and K.P. Plucknett: Mater. Sci. Eng. A, 2015, vol. 644, pp. 404–92.

    CAS  Google Scholar 

  3. H. Donthula, B. Vishwanadh, T. Alam, T. Borkar, R.J. Contieri, R. Caram, R. Banerjee, R. Tewari, G.K. Dey, and S. Banerjee: Acta. Mater., 2019, vol. 168, pp. 75–63.

    Article  Google Scholar 

  4. Y.X. Mu, P.W. Xu, Y. Liang, S. Xiang, and C.H. Yin: Mater. Sci. Eng. A, 2022, vol. 851, 143642.

    Article  CAS  Google Scholar 

  5. Y.F. Yang, M. Yan, S.D. Luo, G.B. Schaffer, and Q. Ma: J. Alloys Compd., 2013, vol. 579, pp. 557–53.

    Google Scholar 

  6. E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo: Acta Mater., 2015, vol. 98, pp. 93–81.

    Google Scholar 

  7. Y. Chong, R. Zheng, G. Deng, A. Shibata, and N. Tsuji: Metall. Mater. Trans. A, 2020, vol. 51, pp. 2862–51.

    Article  Google Scholar 

  8. H.J. Lee and H.I. Aaronson: J. Mater. Sci., 1988, vol. 23, pp. 160–50.

    Google Scholar 

  9. A. Durgaprasad, S. Giri, S. Lenka, S. Kundu, S. Mishra, S. Chandra, R.D. Doherty, and I. Samajdar: Acta Mater., 2017, vol. 129, pp. 289–78.

    Article  Google Scholar 

  10. S. Gaurav and R. Upadrasta: Prog. Mater. Sci., 2020, vol. 111, 100653.

    Article  Google Scholar 

  11. R.A. Mohammad, M.M. Homayoun, H. Amir, and S.K. Hyoung: Prog. Mater. Sci., 2022, vol. 127, p. 10093.

    Google Scholar 

  12. Y. Chong, R. Gholizadeh, T. Tsuru, R.P. Zhang, K. Inoue, W.Q. Gao, A. Godfrey, M. Mitsuhara, J.W. MorrisJr, A.M. Minor, and N. Tsuji: Nat. Commun., 2023, vol. 14, p. 404.

    Article  CAS  Google Scholar 

  13. M.X. Zhang and P.M. Kelly: Prog. Mater. Sci., 2009, vol. 54, pp. 1170–101.

    Article  Google Scholar 

  14. Y.F. Yang, S.D. Luo, C.J. Bettles, G.B. Schaffer, and M. Qian: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7387–381.

    Google Scholar 

  15. F.H. Froes: Titanium Physical Metallurgy Processing and Applications, ASM International, Ohio, 2015.

    Book  Google Scholar 

  16. X. Zhou, X.Y. Li, and K. Lu: Science, 2018, vol. 360, pp. 530–26.

    Article  Google Scholar 

  17. Y.F. Yang and Q. Ma: Metall. Mater. Trans. A, 2018, vol. 49, pp. 6–11.

    Google Scholar 

  18. C. Tan, S.F. Li, and Y.F. Yang: Metall. Mater. Trans. A, 2018, vol. 49, pp. 3401–394.

    Google Scholar 

  19. K.N. Campo, L. Fanton, M.G.D. Mello, S.C. Moon, R. Dippenaar, and R. Caram: Mater. Charact., 2020, vol. 159, 110013.

    Article  CAS  Google Scholar 

  20. W.W. Mullins: J. Appl. Phys., 1957, vol. 195728, pp. 333–39.

    Article  Google Scholar 

  21. E. Rabkin and L. Klinger: Metall. Res. Technol., 2001, vol. 98, pp. 1059–64.

    CAS  Google Scholar 

  22. R.L. Fullman: J. Appl. Phys., 1951, vol. 22, pp. 448–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 52074254, 52174349 and 52204377), the Key Projects of International Cooperation (No. 122111KYSB20200034), the CAS Project for Young Scientists in Basic Research (YSBR-025), and the Project of Key Laboratory of Science and Technology on Particle Materials (No. CXJJ-22S043), Chinese Academy of Sciences. The authors are grateful to R.D.K. Misra for careful reading, review, and editing of the study described here.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. F. Li or Y. F. Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 986 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, X.M., Li, S.F., Wang, S.X. et al. Ductile Ti–Ni Alloys With an Equiaxed Microstructure Designed by Tuning the Precipitation Pathway of Ti2Ni. Metall Mater Trans A 54, 4208–4214 (2023). https://doi.org/10.1007/s11661-023-07179-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07179-6

Navigation