Skip to main content
Log in

Investigation on the Microstructure and Mechanical Properties of Ti-1.0Fe Alloy with Equiaxed α + β Microstructures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the microstructural characteristics and mechanical properties of Ti-1.0Fe alloy with equiaxed α + β microstructures were investigated in detail. Four different equiaxed α + β microstructures with β phase fraction ranging from 3 to 26 pct were obtained by hot deforming the martensite initial microstructure in α + β two-phase region with different deformation temperatures and cooling rates. The average nano-hardness of β grains was found to be much larger than that of α grains, which was attributed to the higher Fe concentration as well as nano-sized athermal ω precipitates inside the β grains. As a result, plastic strain partitioning occurred between the two phases during the tensile deformation, where the plastic strain within the soft α grains was much larger. With the increase of the β phase fraction, both yield and tensile strength of the samples increased, while at the same time, the total elongation gradually decreased. Most of the micro-cracks formed at the α/β interphase boundaries and propagated across the narrowest part of β phase. In the sample with the largest β phase fraction (26 pct), strain-induced β to α′ phase transformation occurred at the expense of initial athermal ω precipitates during the tensile deformation. This resulted into local nano-hardness variations between transformed and un-transformed β areas. Consequently, much more micro-cracks formed in this sample either at the boundaries between transformed and un-transformed β areas, or around the strain-induced α′ phase with a plate-like morphology. This explained the premature fracture shortly after necking in the sample with the largest β phase fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. [1] D. Banerjee and J.C. Williams: Acta Mater, 2013, vol. 61, pp. 844-879.

    Article  CAS  Google Scholar 

  2. G. Lutjering and J.C. Williams, Titanium, 2nd edition, Springer, Berlin, 2005.

    Google Scholar 

  3. [3] L.A. Maltakhova, A.N. Maltakhov, S.N. Monteiro, S.G. Fedotov, B.A. Goncharenko, Mater Sci Eng A, 2005, vol. 393, pp. 320-326.

    Article  Google Scholar 

  4. [4] V. Lyasotskaya, S. Fedotov, S. Knyazeva, A. Dmitriev, Metal Sci Heat Treat, 1993, vol. 35, pp. 242-246.

    Article  Google Scholar 

  5. [5] A.R. Kilmametov, Yu. Ivanisenko, A.A. Mazilkin, B.B. Straumal, A.S. Gornakova, O.B. Fabrichnaya, M.J. Kriegel, D. Rafaja and H. Hahn: Acta Mater, 2018, vol. 144, pp. 337-351.

    Article  CAS  Google Scholar 

  6. [6] B.B. Straumal, A.R. Kilmametov, Yu. Ivanisenko, A.S. Gornakova, A.A. Mazilkin, M.J. Kriegel, O.B. Fabrichnaya, B. Baretzky and H. Hahn, Adv Eng Mater, 2015, vol. 17, pp. 1835-1841.

    Article  CAS  Google Scholar 

  7. A. Kilmametov, Y. Ivanisenko, B. Straumal, A.A. Mazilkin, A.S. Gornakova, M.J. Kriegel, O.B. Fabrichnaya, D. Rafaja and H. Hahn, Scr. Mater., 2017, vol. 136, pp. 46-49

    Article  CAS  Google Scholar 

  8. [8] Yu. Ivanisenko, A. Kilmametov, H. Rosner and R.Z. Valiev, Int J Mater Res, 2018, vol. 99, pp. 36-41.

    Article  Google Scholar 

  9. [9] Y. Chong, G.Y. Deng, A. Shibata, N. Tsuji, Adv Eng Mater, 2019, vol. 21, pp. 1900607.

    Article  CAS  Google Scholar 

  10. [10] G.Y. Deng, T. Bhattacharjee, Y. Chong, R.X. Zheng, Y. Bai, A. Shibata, N. Tsuji, J All Comp, 2020, vol. 822, pp. 153604.

    Article  CAS  Google Scholar 

  11. [11] M.J. Kriegel, A.R. Kilmametov, M. Rudolph, B.B. Straumal, A.S. Gornakova, H. Stocker, Yu. Ivanisenko, O.B. Fabrichnaya, H. Hahn and D. Rafaja, Adv Eng Mater, 2018, vol. 20, pp. 170093.

    Article  Google Scholar 

  12. [12] S.L Semiatin, V. Seetharaman and I. Weiss, JOM, 1997, vol. 49, pp. 33-40.

    Article  CAS  Google Scholar 

  13. [13] S.L. Semiatin, V. Seetharaman and I. Weiss, Mater Sci Eng A, 1999, vol. 263, pp. 257-271.

    Article  Google Scholar 

  14. [14] T. Furuhara, B. Poorganji, H. Abe and T. Maki, JOM, 2007, vol. 59, pp. 64-67.

    Article  CAS  Google Scholar 

  15. [15] S.L. Semiatin and T.R. Bieler, Acta Mater, 2001, vol. 49, pp. 3565-3573.

    Article  CAS  Google Scholar 

  16. [16] Y. Chong and N. Tsuji, Mater Sci Forum, 2016, vol. 879, pp. 344-349.

    Article  Google Scholar 

  17. [17] S. Mironov, M. Murzinova, S. Zherebtsov, G.A. Salishchev and S.L. Semiatin, Acta Mater, 2009, vol. 57, pp. 2470-2481.

    Article  CAS  Google Scholar 

  18. [18] Y. Chong, T. Bhattacharjee, M-H. Park, A. Shibata and N. Tsuji, Mater Sci Eng A, 2018, vol. 730, pp. 217-222.

    Article  CAS  Google Scholar 

  19. [19] H.H. Liu, M. Niinomi, M. Nakai, and K. Cho, Acta Mater, 2016, vol. 106, pp. 162-170.

    Article  CAS  Google Scholar 

  20. [20] H.H. Liu, M. Niinomi, M. Nakai, K. Cho and H. Fujii, Scripta Mater, 2017, vol. 130, pp. 27-31.

    Article  CAS  Google Scholar 

  21. [21] S.K. Sikka, K. Vohra and R. Chidambaram, Prog Mater Sci, 1982, vol. 27, pp. 245-310.

    Article  CAS  Google Scholar 

  22. [22] N. Tsuji, Y. Ito, Y. Saito and Y. Minamino, Scripta Mater, 2002, vol. 47, pp. 893-899.

    Article  CAS  Google Scholar 

  23. [23] N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa, Scripta Mater, 1999, vol. 40, pp. 795-800.

    Article  CAS  Google Scholar 

  24. [24] P.J. Jacques, Q. Furnemont, F. Lani, T. Pardoen and F. Delannay, Acta Mater, 2007, vol. 55, pp. 3681-3693.

    Article  CAS  Google Scholar 

  25. [25] S. Zaefferer, J. Ohlert and W. Bleck, Acta Mater, 2004, vol. 52, pp. 2765-2778.

    Article  CAS  Google Scholar 

  26. [26] F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud and T. Antretter, Int J Plasticity, 2000, vol. 16, pp. 723-748.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support from Cross-ministerial Strategic Innovation Promotion Program (SIP) supported by the Cabinet Office of Japanese government and the Elements Strategy Initiative for Structural Materials (ESISM) in Kyoto University supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Chong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 30, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, Y., Zheng, R., Deng, G. et al. Investigation on the Microstructure and Mechanical Properties of Ti-1.0Fe Alloy with Equiaxed α + β Microstructures. Metall Mater Trans A 51, 2851–2862 (2020). https://doi.org/10.1007/s11661-020-05760-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05760-x

Navigation