Skip to main content
Log in

Inter-granular and Intra-granular Crack Behavior in Mg Bicrystal of [\(1\overline{2 }10\)] Symmetric Tilt Grain Boundary: LEFM Prediction and Atomic Simulation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The grain boundary (GB) influences crack propagation, and the intrinsic brittleness/ductility of GB may be related to the interfacial structures. This work examined the effects of [\(1\overline{2 }10\)] symmetrical tilting grain boundary (STGB) on the crack behaviors in bicrystal Mg to investigate the fracture mechanisms of hexagonal close-packed Mg. The [\(1\overline{2}10\)] STGB bicrystal Mg models were constructed via the molecular dynamics method, and the cleavage/emission crack-tip behaviors of pre-existing inter-granular and intra-granular cracks under Mode I crack-tip stress intensity loading at T = 0 K were first studied using anisotropic linear elastic fracture mechanics and atomic simulations. For inter-granular cracks, the crack-tip behaviors depend on the intrinsic brittleness/ductility of the [\(1\overline{2 }10\)] STGB. The crack at the brittle GB and the nucleated voids around the crack tip cause crack propagation via void growth and coalescence. The crack tip at the ductile GB was blunted by dislocation emission around the crack tip. The results show that by introducing ductile [\(1\overline{2 }10\)] STGB, the crack-tip can be blunted, and the GB fracture can be prevented in Mg. For intra-granular cracks, the brittle crack tip cleaved along its cleavage plane, and the crack tip showed cleavage/emission competitive behaviors due to the influences of GB stress. The stress field of the crack-tip induced the migration of [\(1\overline{2 }10\)] STGB. Both the cleavage and emission behaviors were observed at the crack tip with very close critical stress intensity for Griffith cleavage (KIc) and dislocation emission (KIe).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Somekawa, A. Singh, and T. Mukai: Philos. Mag. Lett., 2009, vol. 89, pp. 2–10.

    Article  CAS  Google Scholar 

  2. H. Somekawa, K. Nakajima, A. Singh, and T. Mukai: Philos. Mag. Lett., 2010, vol. 90, pp. 831–39.

    Article  CAS  Google Scholar 

  3. J.S. Santner and M.E. Fine: Metall. Mater. Trans. A, 1976, vol. 7A, pp. 601–04.

    Article  CAS  Google Scholar 

  4. T.H. Chuang and Y.C. Pan: Metall. Mater. Trans. A, 1992, vol. 23A, pp. 1187–93.

    Article  CAS  Google Scholar 

  5. J.R. Rice: J. Mech. Phys. Solids, 1992, vol. 40, pp. 239–71.

    Article  CAS  Google Scholar 

  6. A.A. Griffith: Philos. Trans. R. Soc. A, 1921, vol. 221, pp. 163–98.

    Google Scholar 

  7. T. Sumigawa, T. Shimada, S. Tanaka, H. Unno, N. Ozaki, S. Ashida, and T. Kitamura: ACS Nano, 2017, vol. 11, pp. 6271–76.

    Article  CAS  Google Scholar 

  8. P. Gallo, Y. Yan, T. Sumigawa, and T. Kitamura: Adv. Theory Simul., 2018, vol. 1, p. 1700006.

    Article  Google Scholar 

  9. J.R. Rice: J. Appl. Mech., 1967, vol. 34, pp. 287–98.

    Article  Google Scholar 

  10. J.R. Willis: J. Mech. Phys. Solids, 1967, vol. 15, pp. 151–62.

    Article  Google Scholar 

  11. S.J. Zhou, L.D. Preston, S.P. Lomdahl, and M.D. Beazley: Science, 1998, vol. 279, pp. 1525–27.

    Article  CAS  Google Scholar 

  12. S. Xu, Y.F. Guo, and A.H.W. Ngan: Int. J. Plasticity, 2013, vol. 43, pp. 116–27.

    Article  CAS  Google Scholar 

  13. P. Gumbsch and G.E. Beltz: Modelling Simul. Mater. Sci. Eng., 1995, vol. 3, pp. 597–613.

    Article  CAS  Google Scholar 

  14. Z.X. Wu and W.A. Curtin: Acta Mater., 2015, vol. 88, pp. 1–2.

    Article  Google Scholar 

  15. E. Bitzek and P. Gumbsch: J. Solid Mech. Mater. Eng., 2008, vol. 2, pp. 1348–59.

    Article  Google Scholar 

  16. F. Meng, C. Chen, and J. Song: J. Phys. Chem. Lett., 2015, vol. 6, pp. 4038–42.

    Article  CAS  Google Scholar 

  17. D. Farkas, H. Van Swygenhoven, and P.M. Derlet: Phys. Rev. B, 2002, vol. 66, 060101.

    Article  Google Scholar 

  18. J.J. Möller and E. Bitzek: Acta Mater., 2014, vol. 73, pp. 1–1.

    Article  Google Scholar 

  19. A. Tehranchi and W.A. Curtin: J. Mech. Phys. Solids, 2017, vol. 101, pp. 150–65.

    Article  CAS  Google Scholar 

  20. J. Song and W.A. Curtin: Acta Mater., 2011, vol. 59, pp. 1557–69.

    Article  CAS  Google Scholar 

  21. P. Andric and W.A. Curtin: Modelling Simul. Mater. Sci. Eng., 2019, vol. 27, 013001.

    Article  CAS  Google Scholar 

  22. C. Yan, L. Ye, and Y.W. Mai: Mater. Lett., 2004, vol. 58, pp. 3219–21.

    Article  CAS  Google Scholar 

  23. H. Somekawa and T. Mukai: J. Alloys Compd., 2006, vol. 417, pp. 209–13.

    Article  CAS  Google Scholar 

  24. S. Hai and E.B. Tadmor: Acta Mater., 2003, vol. 51, pp. 117–31.

    Article  CAS  Google Scholar 

  25. D.H. Warner and W.A. Curtin: Acta Mater., 2009, vol. 57, pp. 4267–77.

    Article  CAS  Google Scholar 

  26. L. Zhou and Y.F. Guo: Materials, 2015, vol. 8, pp. 5250–64.

    Article  CAS  Google Scholar 

  27. Q. Zu, H.X. Gong, S. Liu, and S.Q. Liu: Mater. Lett., 2020, vol. 266, 127493.

    Article  CAS  Google Scholar 

  28. V. Kaushik, R. Narasimhan, and R.K. Mishra: Mat. Sci. Eng. A, 2014, vol. 590, pp. 174–85.

    Article  CAS  Google Scholar 

  29. J. Wang and I.J. Beyerlein: Modelling Simul. Mater. Sci. Eng., 2012, vol. 20, 024002.

    Article  Google Scholar 

  30. C.H. Xu, X.B. Tian, W.T. Jiang, Q.Y. Wang, and H.D. Fan: Int. J. Plasticity, 2022, vol. 156, 103362.

    Article  CAS  Google Scholar 

  31. X.Y. Liu, J.B. Adams, F. Ercolessi, and J.A. Moriarty: Modelling Simul. Mater. Sci. Eng., 1996, vol. 4, pp. 293–303.

    Article  CAS  Google Scholar 

  32. D.H. Kim, M.V. Manuel, F. Ebrahimi, J.S. Tulenko, and S.R. Phillpot: Acta Mater., 2010, vol. 58, pp. 6217–29.

    Article  CAS  Google Scholar 

  33. B. Li and E. Ma: Acta Mater., 2009, vol. 57, pp. 1734–43.

    Article  CAS  Google Scholar 

  34. S. Plimpton: J. Comput. Phys., 1995, vol. 117, pp. 1–9.

    Article  CAS  Google Scholar 

  35. A. Stukowski: Modelling Simul. Mater. Sci. Eng., 2010, vol. 18, 015012.

    Article  Google Scholar 

  36. H. Tsuzuki, P.S. Branicio, and J.P. Rino: Comput. Phys. Commun., 2007, vol. 177, pp. 518–23.

    Article  CAS  Google Scholar 

  37. A.P. Sutton and V. Vitek: Phil. Trans. R. Soc. Lond. A, 1983, vol. 309, pp. 1–36.

    Article  CAS  Google Scholar 

  38. J. Wang, A. Misra, and J.P. Hirth: Phys. Rev. B, 2011, vol. 83, 064106.

    Article  Google Scholar 

  39. J.D. Rittner and D.N. Seidman: Phys. Rev. B, 1996, vol. 54, pp. 6999–7015.

    Article  CAS  Google Scholar 

  40. R.W. Balluffi and P.D. Bristowe: Surf. Sci., 1984, vol. 144, pp. 28–43.

    Article  CAS  Google Scholar 

  41. Z. Wu, M.F. Francis, and W.A. Curtin: Modelling Simul. Mater. Sci. Eng., 2015, vol. 23, 015004.

    Article  CAS  Google Scholar 

  42. M.A. Tschopp, G.J. Tucker, and D.L. Mcdowell: Acta Mater., 2007, vol. 55, pp. 3959–69.

    Article  CAS  Google Scholar 

  43. D.E. Spearot, M.A. Tschopp, K.I. Jacob, and D.L. McDowell: Acta Mater., 2007, vol. 55, pp. 705–14.

    Article  CAS  Google Scholar 

  44. G.J. Tucker, M.A. Tschopp, and D.L. McDowell: Acta Mater., 2010, vol. 58, pp. 6464–73.

    Article  CAS  Google Scholar 

  45. R. Schweinfest, A.T. Paxton, and M.W. Finnis: Nature, 2004, vol. 432, pp. 1008–11.

    Article  CAS  Google Scholar 

  46. Z. Lee, V. Radmilovic, B. Ahn, J.L. Enrique, and R.N. Steven: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 795–801.

    Article  CAS  Google Scholar 

  47. P.J. Noell, R.B. Sills, and B.L. Boyce: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 154–66.

    Article  Google Scholar 

  48. J.R. Rice and D.M. Tracey: J. Mech. Phys. Solids, 1969, vol. 17, pp. 201–17.

    Article  Google Scholar 

  49. J. Faleskog, X. Gao, and C.F. Shih: Int. J. Fract., 1998, vol. 89, pp. 355–73.

    Article  Google Scholar 

  50. K.N. Solanki, D.K. Ward, and D.J. Bammann: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 340–47.

    Article  Google Scholar 

  51. V.P. Rajan and W.A. Curtin: J. Mech. Phys. Solids, 2016, vol. 90, pp. 18–28.

    Article  Google Scholar 

  52. P. Andric and W.A. Curtin: J. Mech. Phys. Solids, 2017, vol. 106, pp. 315–37.

    Article  Google Scholar 

  53. R. Thomson, C. Hsieh, and V. Rana: J. Appl. Phys., 1971, vol. 42, pp. 3154–60.

    Article  CAS  Google Scholar 

  54. W.A. Curtin: J. Mater. Res., 1990, vol. 5, pp. 1549–60.

    Article  Google Scholar 

Download references

Acknowledgments

The present work is supported by the National Natural Science Foundation of China (Grant No. NSFCU21A2047) and the Fundamental Research Funds for the Central Universities (Grant No. 2022FRFK060003). The authors also express their gratitude to Dr. William Curtin (École Polytechnique Fédérale de Lausanne) and Dr. Andric Predrag (École Polytechnique Fédérale de Lausanne) for their support on linear elastic fracture mechanics calculations.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: LEFM Analysis of Crack-Tip Behaviors in Anisotropic Media

Appendix A: LEFM Analysis of Crack-Tip Behaviors in Anisotropic Media

Considering the plane strain and infinitesimal deformation (i.e., \({u}_{k,3}=0,\;{\epsilon }_{33}=0\)), the components of displacement, stress, strain, and stiffness tensor are denoted as \({u}_{i},{\sigma }_{ij},{\epsilon }_{ij}=\left({u}_{i,j}+{u}_{j,i}\right)/2,\) and \({C}_{ijkl}.\) The comma in subscript denotes partial differentiation with respect to the coordinate system. Under these assumptions, the stress field around the crack tip is given by

$${\left[{\sigma }_{11}, {\sigma }_{21}, {\sigma }_{31}\right]}^{T}=-\frac{{K}_{\text{I}}}{\sqrt{2\pi r}}\text{Re}\left\{B\langle \frac{{\nu }_{\alpha }}{\sqrt{\text{cos}\theta +{\nu }_{\alpha }\text{sin}\theta }}\rangle {B}^{-1}\right\}$$
(A1)
$${\left[{\sigma }_{12}, {\sigma }_{22}, {\sigma }_{32}\right]}^{T}=-\frac{{K}_{I}}{\sqrt{2\pi r}}\text{Re}\left\{B\langle \frac{{\nu }_{\alpha }}{\sqrt{\text{cos}\theta +{\nu }_{\alpha }\text{sin}\theta }}\rangle {B}^{-1}\right\}$$
(A2)

The displacement field around the crack tip is given by

$$u={K}_{I}\sqrt{\frac{2r}{\pi }}\text{Re}\left\{A\langle \sqrt{\text{cos}\theta +{\nu }_{\alpha }\text{sin}\theta }\rangle {B}^{-1}\right\}$$
(A3)

where A, B, and \(\nu\) satisfy the following eigenvalue equation

$$N\left[\begin{array}{l}A\\ B\end{array}\right]=\nu \left[\begin{array}{l}A\\ B\end{array}\right]$$
(A4)

In Eq. [A4], \(A=\left[{a}_{1}, {a}_{2},{a}_{3}\right]\) and \(B=\left[{b}_{1}, {b}_{2},{b}_{3}\right]\) are the complex matrices composed of eigenvectors a and b, \(\nu =\langle {\nu }_{\alpha }\rangle =\text{diag}\left[{\nu }_{\alpha }\right]\) eigenvaluedefined in the Stroh formalism, and N is the fundamental elasticity matrix defined as

$$N=\left[\begin{array}{l}{N}_{1} {N}_{2}\\ {N}_{3}{ N}_{1}^{\text{T}}\end{array}\right]$$
(A5)

with

$${N}_{1}=-{T}^{-1}{R}^{\text{T}},{N}_{2}={T}^{-1}, {N}_{3}={T}^{-1}{R}^{\text{T}}-Q$$
(A6)

and

$$Q=\left[\begin{array}{l}{C}_{11} {C}_{16} {C}_{15} \\ {C}_{16} {C}_{66} {C}_{56}\\ {C}_{15} {C}_{56} {C}_{55}\end{array}\right], \quad R=\left[\begin{array}{l}{C}_{16} {C}_{12} {C}_{14}\\ {C}_{66} {C}_{26} {C}_{46}\\ {C}_{56} {C}_{25} {C}_{45}\end{array}\right],\quad T=\left[\begin{array}{l}{C}_{66} {C}_{26} {C}_{46}\\ {C}_{26} {C}_{22} {C}_{24}\\ {C}_{46} {C}_{24} {C}_{44}\end{array}\right]$$
(A7)

In Eq. [A7], \({C}_{ij}\) is the component of the materials stiffness tensor.

The SIF is defined as

$$K={\left[{K}_{\text{II}}, {K}_{\text{I}},{K}_{\text{III}}\right]}^{\text{T}}=\sqrt{\pi a}{\sigma }^{\text{applied}}$$
(A8)

For a semi-infinite and atomically sharp crack in a homogeneous medium or materials interface with a non-oscillatory linear elastic solution, the strain energy release rate G concerning crack propagation is defined as

$$G=\frac{1}{2}{K}^{T}\Lambda K,$$
(A9)

where \(\Lambda\) is the Stroh energy tensor for a crack in a homogeneous medium and materials interface that is given as

$$\Lambda =\left\{\begin{array}{ll} \frac{1}{2}Re\left(iA{B}^{-1}\right) & \quad for \;homogeneous \;medium \\ \frac{1}{4}Re\left(i{A}_{1}{B}_{1}^{-1}\right)+\frac{1}{4}Re\left(i{A}_{2}{B}_{2}^{-1}\right) & \quad at \;materials\;interface\end{array}\right.$$
(A10)

For a crack in a homogeneous medium and material interface the strain energy release rate G under Mode I loadings is given as

$$G=\left\{\begin{array}{ll}{2\gamma }_{\text{s}}, & \quad for\; homogeneous\; medium\\ {2\gamma }_{\text{s}}-{\gamma }_{\text{i}}, & \quad at \;materials\; interface \end{array},\right.$$
(A11)

where \({\gamma }_{\text{s}}\) is the average surface energy of the cleavage plane and \({\gamma }_{\text{i}}\) is the interfacial energy.

The critical SIF for Griffith cleavage is then given as

$${K}_{\text{Ic}}=\left\{\begin{array}{ll}\sqrt{{2\gamma }_{\text{s}}{\Lambda }_{22}^{-1}}, & \quad for\; homogeneous\; medium \\ \sqrt{\left({2\gamma }_{\text{s}}-{\gamma }_{\text{i}}\right){\Lambda }_{22}^{-1}}, & \quad at\; materials\; interface\end{array},\right.$$
(A12)

The critical SIF for dislocation nucleation at a crack-tip can be obtained based on the extended anisotropic elasticity theories of Rice, which is given as

$${K}_{\text{Ie}}=\sqrt{{G}_{\text{Ie}}o\left(\phi ,\theta \right)}/{F}_{12}\left(\theta \right),$$
(A13)

where \(\theta\) is the angle between the crack plane and the slip plane, \(\phi\) is the angle between the dislocation burgers vector and the crack front direction of the slip plane (as shown in Figure 3(b)), \({G}_{\text{Ie}}\) is the critical energy release rate for dislocation nucleation, and \({F}_{12}\left(\theta \right)\) is a geometrical factor given as

$${\frac{{K}_{I}}{\sqrt{2\pi r}}}{F}_{12}\left(\theta \right)=\left({\sigma }_{22}-{\sigma }_{11}\right)\text{sin}\theta \text{cos}\theta +{\sigma }_{12}\left({\text{cos}}^{2}\theta -{\text{sin}}^{2}\theta \right)$$
(A14)

\(o\left(\phi ,\theta \right)\) is an elasticity coefficient and is given as

$$\text{o}\left(\phi ,\uptheta \right)={s}_{i}\left(\phi \right){\Lambda }_{ij}^{{\theta }^{-1}}{s}_{j}\left(\phi \right),$$
(A15)

where \(s\left(\phi \right)\) is the slip vector in constrained path approximation that is given as

$$s\left(\phi \right)=\left(\text{cos}\phi ,0,\text{sin}\phi \right)$$
(A16)

and

$${\Lambda }_{ij}^{\left(\theta \right)}={\Omega }_{ik}{\Lambda }_{kl}{\Omega }_{lj}$$
(A17)

In Eq. [A13], Ω is the rotation matrix and is given as

$$\Omega =\left[\begin{array}{lll}\cos\theta & \quad - \sin\theta & \quad 0\\ \sin\theta & \quad \cos\theta & \quad0\\ 0& \quad 0 & \quad1\end{array}\right]$$
(A18)

The critical energy release rate for dislocation nucleation is given by Andric et al. as

$${G}_{\text{Ie}}=\left\{\begin{array}{ll} 0.145{\gamma }_{\text{s,e}}+0.5{\gamma }_{\text{usf}}, & \quad {\gamma }_{\text{s,e}}>3.45{\gamma }_{\text{usf}} \\ {\gamma }_{\text{usf}},& \quad {\gamma }_{\text{s,e}}<3.45{\gamma }_{\text{usf}}\end{array}\right.$$
(A19)

where \({\gamma }_{\text{s,e}}\) is the surface energy of the emission plane, and \({\gamma }_{\text{usf}}\) is the unstable stacking fault energy of the slip plane. Then the competition between emission and cleavage at the crack-tip can be estimated, i.e. \({K}_{\text{Ie}}<{K}_{\text{Ic}}\) showing emission precedes cleavage, and \({K}_{\text{Ic}}<{K}_{\text{Ie}}\) showing cleavage precedes emission.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Yuan, L., Zhang, Z. et al. Inter-granular and Intra-granular Crack Behavior in Mg Bicrystal of [\(1\overline{2 }10\)] Symmetric Tilt Grain Boundary: LEFM Prediction and Atomic Simulation. Metall Mater Trans A 54, 4315–4331 (2023). https://doi.org/10.1007/s11661-023-07166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07166-x

Navigation