Skip to main content
Log in

Influence of Laser Shock Peening and Ultrasonic Nanocrystal Surface Modification on Residual Stress, Microstructure, and Corrosion–Fatigue Behavior of Aluminum 7075-T6

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Aluminum 7075-T6 alloy was subjected to Laser Shock Peening without Coating (LSPwC) and Ultrasonic Nanocrystal Surface Modification (UNSM) to boost fatigue performance in both air and corrosive environment. Severe plastic deformation (SPD) caused by UNSM treatment induced significantly higher (~3.5 × ) surface compressive residual stress than LSPwC, while the intense shockwaves generated by LSPwC introduced ~ 3 × higher depth of compression. Electrochemical results confirmed improved polarization resistance and reduced corrosion rate post LSPwC, which is mainly attributed to its oxide layer and near-surface microstructural homogenization. Changes in the mechanical and corrosion behavior of the alloy after LSPwC produced up to ~ 650 pct augment in corrosion–fatigue life over base material while UNSM improved the performance by up to ~ 250 pct.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P.S. Pao, C.R. Feng, and S.J. Gill: Corrosion, 2000, vol. 56, pp. 1022–31.

    Article  CAS  Google Scholar 

  2. K.K. Sankaran, R. Perez, and K.V. Jata: Mater. Sci. Eng. A, 2001, vol. 297, pp. 223–29.

    Article  Google Scholar 

  3. R.M. Chlistovsky, P.J. Heffernan, and D.L. DuQuesnay: Int. J. Fatigue, 2007, vol. 29, pp. 1941–49.

    Article  CAS  Google Scholar 

  4. X.D. Li, X.S. Wang, H.H. Ren, Y.L. Chen, and Z.T. Mu: Corros. Sci., 2012, vol. 55, pp. 26–33.

    Article  CAS  Google Scholar 

  5. V.K. Gupta and S.R. Agnew: Int. J. Fatigue, 2011, vol. 33, pp. 1159–74.

    Article  CAS  Google Scholar 

  6. A. Gill, A. Telang, S.R. Mannava, D. Qian, Y.S. Pyoun, H. Soyama, and V.K. Vasudevan: Mater. Sci. Eng. A, 2013, vol. 576, pp. 346–55.

    Article  CAS  Google Scholar 

  7. C.S. Montross, T. Wei, L. Ye, G. Clark, and Y.W. Mai: Int. J. Fatigue, 2002, vol. 24, pp. 1021–36.

    Article  CAS  Google Scholar 

  8. Z. Bergant, U. Trdan, and J. Grum: Int. J. Fatigue, 2016, vol. 87, pp. 444–55.

    Article  CAS  Google Scholar 

  9. O. Hatamleh, J. Lyons, and R. Forman: Int. J. Fatigue, 2007, vol. 29, pp. 421–34.

    Article  CAS  Google Scholar 

  10. S.R. Kondavalasa, A. Prakash, R. Jagtap, S. Shanmugam, I. Samajdar, V.K. Vasudevan, and G. Wilde: Mater. Charact., 2019, vol. 153, pp. 328–38.

    Article  CAS  Google Scholar 

  11. M.K. Khan, M.E. Fitzpatrick, Q.Y. Wang, Y.S. Pyoun, and A. Amanov: Fatigue Fract. Eng. Mater. Struct., 2018, vol. 41, pp. 844–55.

    Article  Google Scholar 

  12. P. Peyre, R. Fabbro, P. Merrien, and H.P. Lieurade: Mater. Sci. Eng. A, 1996, vol. 210, pp. 102–13.

    Article  Google Scholar 

  13. A.K. Gujba, Z. Ren, Y. Dong, C. Ye, and M. Medraj: Surf. Coat. Technol., 2016, vol. 307, pp. 157–70.

    Article  CAS  Google Scholar 

  14. J.T. Wang, Y.K. Zhang, J.F. Chen, J.Y. Zhou, M.Z. Ge, Y.L. Lu, and X.L. Li: Mater. Sci. Eng. A, 2015, vol. 647, pp. 7–14.

    Article  CAS  Google Scholar 

  15. U. Trdan, J.A. Porro, J.L. Ocaña, and J. Grum: Surf. Coat. Technol., 2012, vol. 208, pp. 109–16.

    Article  CAS  Google Scholar 

  16. U. Trdan and J. Grum: Corros. Sci., 2012, vol. 59, pp. 324–33.

    Article  CAS  Google Scholar 

  17. Y. Sano, M. Obata, T. Kubo, N. Mukai, M. Yoda, K. Masaki, and Y. Ochi: Mater. Sci. Eng. A, 2006, vol. 417, pp. 334–40.

    Article  Google Scholar 

  18. A. Sharma, J. Song, D. Furfari, S.R. Mannava, and V.K. Vasudevan: Scripta Mater., 2021, vol. 202, p. 114012.

    Article  CAS  Google Scholar 

  19. P. Peyre, C. Carboni, P. Forget, G. Beranger, C. Lemaitre, and D. Stuart: J. Mater. Sci., 2007, vol. 42, pp. 6866–77.

    Article  CAS  Google Scholar 

  20. S. Sathyajith, S. Kalainathan, and S. Swaroop: Opt. Laser Technol., 2013, vol. 45, pp. 389–94.

    Article  CAS  Google Scholar 

  21. Y. Sano, K. Masaki, T. Gushi, and T. Sano: Mater. Des., 2012, vol. 36, pp. 809–14.

    Article  CAS  Google Scholar 

  22. E. Troiani and N. Zavatta: Metals (Basel), 2019, https://doi.org/10.3390/met9070728.

    Article  Google Scholar 

  23. C.J. Lee, R.I. Murakami, and C.M. Suh: Int. J. Mod. Phys. B, 2010, vol. 24, pp. 2512–17.

    Article  CAS  Google Scholar 

  24. C. Ye, A. Telang, A. Gill, X. Wen, S.R. Mannava, D. Qian, and V.K. Vasudevan: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 972–78.

    Article  Google Scholar 

  25. M. Gao, C.R. Feng, and R.P. Wei: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1145–51.

    Article  CAS  Google Scholar 

  26. J. Gubicza, I. Schiller, N.Q. Chinh, J. Illy, Z. Horita, and T.G. Langdon: Mater. Sci. Eng. A, 2007, vol. 460–461, pp. 77–85.

    Article  Google Scholar 

  27. P.W. Trimby, Y. Cao, Z. Chen, S. Han, K.J. Hemker, J. Lian, X. Liao, P. Rottmann, S. Samudrala, J. Sun, J.T. Wang, J. Wheeler and J.M. Cairney: Acta Mater., 2014, vol. 62, pp. 69–80.

    Article  CAS  Google Scholar 

  28. U. Trdan, M. Skarba, and J. Grum: Mater. Charact., 2014, vol. 97, pp. 57–68.

    Article  CAS  Google Scholar 

  29. Z.D. Wang, G.F. Sun, Y. Lu, M.Z. Chen, K.D. Bi, and Z.H. Ni: Surf. Coat. Technol., 2020, https://doi.org/10.1016/j.surfcoat.2020.125403.

    Article  Google Scholar 

  30. V. Pandey, J.K. Singh, K. Chattopadhyay, N.C.S. Srinivas, and V. Singh: J. Alloys Compd., 2017, vol. 723, pp. 826–40.

    Article  CAS  Google Scholar 

  31. C. Park, D. Jung, E.J. Chun, S. Ahn, H. Jang, and Y.J. Kim: Appl. Surf. Sci., 2020, vol. 514, p. 145917.

    Article  CAS  Google Scholar 

  32. C. Correa, L. Ruiz De Lara, M. Díaz, A. Gil-Santos, J.A. Porro, and J.L. Ocaña: Int. J. Fatigue, 2015, vol. 79, pp. 1–9.

    Article  CAS  Google Scholar 

  33. S. Adu-Gyamfi, X.D. Ren, E.A. Larson, Y. Ren, and Z. Tong: Opt. Laser Technol., 2018, vol. 108, pp. 177–85.

    Article  CAS  Google Scholar 

  34. Y. Efe, I. Karademir, F. Husem, E. Maleki, R. Karimbaev, A. Amanov, and O. Unal: Appl. Surf. Sci., 2020, vol. 528, p. 146922.

    Article  CAS  Google Scholar 

  35. R. Sun, L. Li, Y. Zhu, W. Guo, P. Peng, B. Cong, J. Sun, Z. Che, B. Li, C. Guo, and L. Liu: J. Alloys Compd., 2018, vol. 747, pp. 255–65.

    Article  CAS  Google Scholar 

  36. A. Amanov, I.S. Cho, Y.S. Pyoun, C.S. Lee, and I.G. Park: Wear, 2012, vol. 286–287, pp. 136–44.

    Article  Google Scholar 

  37. J. Huang, Z. Li, B.Y. Liaw, and J. Zhang: J. Power Sources, 2016, vol. 309, pp. 82–98.

    Article  CAS  Google Scholar 

  38. D.A. Jones: Principles and Prevention of Corrosion, 2nd ed. Pearson, New York, 1996.

    Google Scholar 

  39. J.B. Bajat, I. Milošev, Ž Jovanović, R.M. Jančić-Heinemann, M. Dimitrijević, and V.B. Mišković-Stanković: Corros. Sci., 2010, vol. 52, pp. 1060–69.

    Article  CAS  Google Scholar 

  40. H. Shi, E.H. Han, and F. Liu: Corros. Sci., 2011, vol. 53, pp. 2374–84.

    Article  CAS  Google Scholar 

  41. R.G. Kelly, J.R. Scully, D. Shoesmith, and R.G. Buchheit: Electrochemical Techniques in Corrosion Science and Engineering, Routledge, New York, 2002.

    Book  Google Scholar 

  42. U. Trdan and J. Grum: Corros. Sci., 2014, vol. 82, pp. 328–38.

    Article  CAS  Google Scholar 

  43. W. Yang, S. Ji, Q. Zhang, and M. Wang: Mater. Des., 2015, vol. 85, pp. 752–61.

    Article  CAS  Google Scholar 

  44. B. Wang, J. Liu, M. Yin, Y. Xiao, X.H. Wang, and J.X. He: Mater. Corros., 2016, vol. 67, pp. 51–59.

    Article  Google Scholar 

  45. J. Ma, J. Wen, Q. Li, and Q. Zhang: J. Power Sources, 2013, vol. 226, pp. 156–61.

    Article  CAS  Google Scholar 

  46. T. Hong and M. Nagumo: Corros. Sci., 1997, vol. 39, pp. 1665–72.

    Article  CAS  Google Scholar 

  47. A.G. Sanchez, C. You, M. Leering, D. Glaser, D. Furfari, M.E. Fitzpatrick, J. Wharton, and P.A.S. Reed: Int. J. Fatigue, 2021, vol. 143, p. 106025.

    Article  CAS  Google Scholar 

  48. Q.Y. Wang, N. Kawagoishi, and Q. Chen: Scripta Mater., 2003, vol. 49, pp. 711–16.

    Article  CAS  Google Scholar 

  49. N. Birbilis and R.G. Buchheit: J. Electrochem. Soc., 2005, vol. 152, p. B140.

    Article  CAS  Google Scholar 

  50. S. Prabhakaran, S. Kalainathan, P. Shukla, and V.K. Vasudevan: Opt. Laser Technol., 2019, vol. 115, pp. 447–58.

    Article  CAS  Google Scholar 

  51. F. Andreatta, M.M. Lohrengel, H. Terryn, and J.H.W. De Wit: Electrochim. Acta, 2003, vol. 48, pp. 3239–47.

    Article  CAS  Google Scholar 

  52. S.S. Singh, E. Guo, H. Xie, and N. Chawla: Intermetallics, 2015, vol. 62, pp. 69–75.

    Article  CAS  Google Scholar 

  53. A.I. Ikeuba, B. Zhang, J. Wang, E.-H. Han, W. Ke, and P.C. Okafor: J. Electrochem. Soc., 2018, vol. 165, pp. C180-94.

    Article  CAS  Google Scholar 

  54. S. Amini, S.A. Kariman, and R. Teimouri: Int. J. Adv. Manuf. Technol., 2017, vol. 91, pp. 1091–1102.

    Article  Google Scholar 

  55. K.T. Kim and Y.S. Kim: Materials (Basel), 2019, https://doi.org/10.3390/ma12193165.

    Article  Google Scholar 

  56. K.T. Kim, J.H. Lee, and Y.S. Kim: Materials (Basel), 2017, vol. 10, pp. 1–14.

    Google Scholar 

  57. T. Wang, J. Yu, and B. Dong: Surf. Coat. Technol., 2006, vol. 200, pp. 4777–81.

    Article  CAS  Google Scholar 

  58. C. Aparicio, F. Javier Gil, C. Fonseca, M. Barbosa, and J.A. Planell: Biomaterials, 2003, vol. 24, pp. 263–73.

    Article  CAS  Google Scholar 

  59. Q. Sun, X. Liu, Q. Han, J. Li, R. Xu, and K. Zhao: Surf. Coat. Technol., 2018, vol. 337, pp. 552–60.

    Article  CAS  Google Scholar 

  60. T.M. Yue, L.J. Yan, C.P. Chan, C.F. Dong, H.C. Man, and G.K.H. Pang: Surf. Coat. Technol., 2004, vol. 179, pp. 158–64.

    Article  CAS  Google Scholar 

  61. A. Amanov, Y.-S. Pyun, J.-H. Kim, C.-M. Suh, I.-S. Cho, H.-D. Kim, Q. Wang, and M.K. Khan: Fatigue Fract. Eng. Mater. Struct., 2015, vol. 38, pp. 1266–73.

    Article  CAS  Google Scholar 

  62. S. Suresh, A.K. Vasudévan, and P.E. Bretz: Metall. Trans. A, 1984, vol. 15A, pp. 369–79.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Airbus for supplying the material and funding this research (Grant #1100115321). In addition, we would like to express our gratitude to Ohio Department of Development and Third Frontier Commission (Grant # TECH 10-014), which provided funding in support of the ‘Ohio Center for Laser Shock Processing for Advanced Materials and Devices’ and the equipment in the center that was used in this work. We would like to thank Dr. Lee Casalena, Dr. Lin Jiang, and Jim Smith from ThermoFisher Scientific for assisting with the high-resolution S/TEM imaging using Talos F200i microscope. We would also like to extend our acknowledgements to the Advanced Materials Characterization Center (AMCC) at University of Cincinnati for the use of SEM for this study.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Song, J., Furfari, D. et al. Influence of Laser Shock Peening and Ultrasonic Nanocrystal Surface Modification on Residual Stress, Microstructure, and Corrosion–Fatigue Behavior of Aluminum 7075-T6. Metall Mater Trans A 54, 4233–4252 (2023). https://doi.org/10.1007/s11661-023-07159-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07159-w

Navigation