Skip to main content
Log in

Experimental Determination of Vacancy Formation Energies in Multicomponent Systems

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

‘Sluggish diffusion’ is probably the most debated aspect of the high entropy alloys in the literature over the past decade but there is almost complete absence of data on the energetics of lattice defects such as vacancies in these alloys. The present work reports the measurements of the enthalpies of vacancy formation \(({\Delta H}_{f}^{v})\)by residual resistivity technique for binary Fe−45.3 at. pct Ni, ternary Fe−16 at. pct Cr–19 at. pct Ni, quaternary equiatomic Fe–Ni–Cr–Co, and quinary equiatomic Fe–Ni–Cr–Co–Mn alloys. It is observed that the enthalpy of vacancy formation increases from the studied binary to quinary alloys. A qualitative analysis is presented for understanding the role of the binary enthalpies of mixing \(({\Delta H}^{\text{mix}})\) of constituent elements on the enthalpy of vacancy formation. It is discerned that \({\Delta H}_{f}^{v}\) is governed more by the type of constituent elements rather than mere number of components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299–303.

    Article  CAS  Google Scholar 

  2. J.W. Yeh: Ann. Chim. Sci. Des. Mater., 2006, vol. 31, pp. 633–48.

    Article  CAS  Google Scholar 

  3. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George: Acta Mater., 2013, vol. 61, pp. 5743–55.

    Article  CAS  Google Scholar 

  4. Q.F. He, Z.Y. Ding, Y.F. Ye, and Y. Yang: JOM, 2017, vol. 69, pp. 2092–98.

    Article  CAS  Google Scholar 

  5. D.B. Miracle: JOM, 2017, vol. 69, pp. 2130–36.

    Article  Google Scholar 

  6. B.S. Murty, J.W. Yeh, S. Ranganathan, and P.P. Bhatacharajee: High-Entropy Alloys, 2nd ed. Elsevier, Amsterdam, 2019.

    Google Scholar 

  7. C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, and S.Y. Chang: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 881–93.

    Article  CAS  Google Scholar 

  8. K.Y. Tsai, M.H. Tsai, and J.W. Yeh: Acta Mater., 2013, vol. 61, pp. 4887–97.

    Article  CAS  Google Scholar 

  9. A. Paul: Scr. Mater., 2017, vol. 135, pp. 153–57.

    Article  CAS  Google Scholar 

  10. M. Vaidya, S. Trubel, B.S. Murty, G. Wilde, and S.V. Divinski: J. Alloys Compd., 2016, vol. 688, pp. 994–1001.

    Article  CAS  Google Scholar 

  11. M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, and S.V. Divinski: Acta Mater., 2018, vol. 146, pp. 211–24.

    Article  CAS  Google Scholar 

  12. D. Gaertner, J. Kottke, G. Wilde, S.V. Divinski, and Y. Chumlyakov: J. Mater. Res., 2018, vol. 33, pp. 3184–91.

    Article  CAS  Google Scholar 

  13. D. Gaertner, K. Abrahams, J. Kottke, V.A. Esin, I. Steinbach, G. Wilde, and S.V. Divinski: Acta Mater., 2019, vol. 166, pp. 357–70.

    Article  CAS  Google Scholar 

  14. K. Kulkarni and G.P.S. Chauhan: AIP Adv., 2015, vol. 5, pp. 1–7.

    Article  Google Scholar 

  15. V. Verma, A. Tripathi, and K.N. Kulkarni: J. Phase Equilibria Diffus., 2017, vol. 38, pp. 445–56.

    Article  CAS  Google Scholar 

  16. V. Verma, A. Tripathi, T. Venkateswaran, and K.N. Kulkarni: J. Mater. Res., 2020, vol. 35, pp. 162–71.

    Article  CAS  Google Scholar 

  17. N. Esakkiraja, K. Pandey, A. Dash, and A. Paul: Philos. Mag., 2019, vol. 99, pp. 2236–64.

    Article  CAS  Google Scholar 

  18. A. Dash, N. Esakkiraja, and A. Paul: Acta Mater., 2020, vol. 193, pp. 163–71.

    Article  CAS  Google Scholar 

  19. N. Esakkiraja, A. Dash, A. Mondal, K.C.H. Kumar, and A. Paul: Materialia, 2021, vol. 16, 101046.

    Article  CAS  Google Scholar 

  20. T.R. Paul, I.V. Belova, and G.E. Murch: Mater. Chem. Phys., 2018, vol. 210, pp. 301–08.

    Article  CAS  Google Scholar 

  21. T.R. Paul, I.V. Belova, and G.E. Murch: Philos. Mag., 2016, vol. 96, pp. 1228–44.

    Article  CAS  Google Scholar 

  22. A.R. Allnatt, T.R. Paul, I.V. Belova, and G.E. Murch: Philos. Mag., 2016, vol. 96, pp. 2969–85.

    Article  CAS  Google Scholar 

  23. D.B. Miracle and O.N. Senkov: Acta Mater., 2017, vol. 122, pp. 448–511.

    Article  CAS  Google Scholar 

  24. S.V. Divinski, A.V. Pokoev, N. Esakkiraja, and A. Paul: Diffus. Found., 2018, vol. 17, pp. 69–104.

    Article  CAS  Google Scholar 

  25. J. Dąbrowa and M. Danielewski: Metals (Basel), 2020, vol. 10, pp. 1–44.

    Article  Google Scholar 

  26. E.W. Huang, H.S. Chou, K.N. Tu, W.S. Hung, T.N. Lam, C.W. Tsai, C.Y. Chiang, B.H. Lin, A.C. Yeh, S.H. Chang, Y.J. Chang, J.J. Yang, X.Y. Li, C.S. Ku, K. An, Y.W. Chang, and Y.L. Jao: Sci. Rep., 2019, vol. 9, pp. 1–10.

    Article  Google Scholar 

  27. K. Sugita, N. Matsuoka, M. Mizuno, and H. Araki: Scr. Mater., 2020, vol. 176, pp. 32–35.

    Article  CAS  Google Scholar 

  28. P. Shewmon: Diffusion in Solids, 2nd ed. Springer, New York, 2016.

    Book  Google Scholar 

  29. D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase Transformations in Metals and Alloys, CRC Press, Boca Raton, 2013.

    Google Scholar 

  30. A.S. Berger, S.T. Ockers, and R.W. Siegel: J. Phys. F., 1979, vol. 9, pp. 1023–33.

    Article  CAS  Google Scholar 

  31. G. Airoldi, G.L. Bacchella, and E. Germagnoli: Phys. Rev. Lett., 1959, vol. 2, pp. 145–46.

    Article  CAS  Google Scholar 

  32. P. Wright and J.H. Evans: Philos. Mag., 1966, vol. 13, pp. 521–31.

    Article  CAS  Google Scholar 

  33. H. Koike, Y. Shizuku, A. Yazaki, and Y. Fukai: J. Phys. Condens. Matter, 2004, vol. 16, pp. 1335–49.

    Article  CAS  Google Scholar 

  34. M. Migschitz and W. Pfeiler: Mater. Sci. Eng. A, 1996, vol. 206, pp. 155–62.

    Article  Google Scholar 

  35. I. Miccoli, F. Edler, H. Pfnür, and C. Tegenkamp: J. Phys. Condens. Matter., 2015, vol. 15, pp. 1–30.

    Google Scholar 

  36. C.B.A. Lucasson and P. Lucasson: J. Phys., 1965, vol. 26, pp. 9–18.

    Article  Google Scholar 

  37. C. Budin, F.D. PierreLucasson, and A. Lucasson: J. Phys., 1963, vol. 24, pp. 508–12.

    Article  Google Scholar 

  38. R.R. Bourassa and B. Lengeler: J. Phys. F, 1976, vol. 6, pp. 1405–13.

    Article  CAS  Google Scholar 

  39. W. Chen, X. Ding, Y. Feng, X. Liu, K. Liu, Z.P. Lu, D. Li, Y. Li, C.T. Liu, and X.Q. Chen: J. Mater. Sci. Technol., 2018, vol. 34, pp. 355–64.

    Article  CAS  Google Scholar 

  40. V.I. Razumovskiy, D. Scheiber, O. Peil, A. Stark, M. Mayer, and G. Ressel: Asp. Min. Miner. Sci., 2022, vol. 8, pp. 962–78.

    Google Scholar 

  41. B. Million, J. Růžičková, J. Velíšek, and J. Vřešťál: Mater. Sci. Eng., 1981, vol. 50, pp. 43–52.

    Article  CAS  Google Scholar 

  42. S.J. Rothman, L.J. Nowicki, and G.E. Murch: J. Phys. F, 1980, vol. 10, pp. 383–98.

    Article  CAS  Google Scholar 

  43. R.A. Swalin: Thermodynamics of Solids, 2nd ed. Wiley, New York, 1972.

    Google Scholar 

  44. ASM Handbook Volume 3: Alloy Phase Diagrams, 10th ed., ASM International, 1992.

  45. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and D.D. Wagman: Selected Values of the Thermodynamic Properties of Binary Alloys, 1st ed. ASM, Metals Park, 1973.

    Google Scholar 

  46. W.A. Dench: Trans. Faraday Soc., 1963, vol. 59, pp. 1279–92.

    Article  CAS  Google Scholar 

  47. C. Colinet, A. Pasturel, and P. Hictor: Calphad, 1985, vol. 21, p. 162.

    Google Scholar 

  48. F.N. Mazandarany and R.D. Pehlke: Metall. Mater. Trans. B, 1973, vol. 4B, pp. 2067–76.

    Article  Google Scholar 

  49. V.N. Eremenko, G.M. Lukaschenko, and V.R. Sidorko: Russ. J. Phys. Chem., 1968, vol. 42, pp. 343–46.

    Google Scholar 

  50. A.K. Niessen and A.R. Miedema: Physica B, 1988, vol. 152, pp. 303–46.

    Article  CAS  Google Scholar 

  51. A.V. Ruban: Phys. Rev. B, 2016, vol. 93, pp. 1–5.

    Article  Google Scholar 

  52. D. Morgan and Y. Zhang: Phys. Rev. B, 2020, vol. 101, pp. 1–2.

    Article  Google Scholar 

  53. S.E. Daigle and D.W. Brenner: Phys. Rev. Mater., 2020, vol. 4, pp. 1–9.

    Google Scholar 

  54. X. Zhang, S.V. Divinski, and B. Grabowski: Acta Mater., 2022, vol. 227, 117677.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by internal fundings of IIT Kanpur.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustubh N. Kulkarni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, S.K., Danayak, S. & Kulkarni, K.N. Experimental Determination of Vacancy Formation Energies in Multicomponent Systems. Metall Mater Trans A 54, 3341–3348 (2023). https://doi.org/10.1007/s11661-023-07103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07103-y

Navigation