Skip to main content
Log in

Influence of Defect Thermodynamics on Self-Diffusion in Complex Concentrated Alloys with Chemical Ordering

  • Properties and Evolution of Defects and Interfaces
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Self-diffusion kinetics in crystalline alloys depend on both equilibrium concentrations and diffusivities of point defects; mostly vacancy defects because of their lower formation energy than interstitial defects. In complex concentrated alloys (CCAs), which are often perceived as random solid solutions, chemical ordering, i.e., preferential bonding between certain groups of elements, generally exists, particularly at low temperatures. Such chemical ordering is expected to affect both point defect thermodynamics and self-diffusion kinetics in CCAs. Using hybrid molecular dynamics and Monte Carlo simulations and taking NiCoCr, HfNbTaZr and CoCuFeNiPd as model alloys, we show that chemical ordering affects the probability and spatial distributions of both vacancy formation energy and migration barrier. A negative correlation between vacancy formation energy and migration barrier is also identified. The probability distribution of formation energy determines the equilibrium vacancy concentration. The spatial distribution determines the diffusion path of vacancies, which preferentially consists of atomic sites with low formation energies. The development of short-range ordering can either increase or decrease self-diffusion when equilibrium vacancy concentration is considered. These findings highlight the importance of defect thermodynamics for understanding self-diffusion in CCAs with chemical ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153. (2014).

    Article  Google Scholar 

  2. F. Granberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, and Y. Zhang, Phys. Rev. Lett. 116, 135504. (2016).

    Article  Google Scholar 

  3. K. Jin, C. Lu, L.M. Wang, J. Qu, W.J. Weber, Y. Zhang, and H. Bei, Scripta Mater. 119, 65. (2016).

    Article  Google Scholar 

  4. Y. Qiu, S. Thomas, M.A. Gibson, H.L. Fraser, and N. Birbilis, NPJ Mater. Degrad. 1, 15. (2017).

    Article  Google Scholar 

  5. M.H. Tsai, and J.W. Yeh, Mater. Res. Lett. 2, 107. (2014).

    Article  Google Scholar 

  6. J.W. Yeh, JOM 65, 1759. (2013).

    Article  Google Scholar 

  7. D.B. Miracle, and O.N. Senkov, Acta Mater. 122, 448. (2017).

    Article  Google Scholar 

  8. Y.Y. Zhao, H.W. Chen, Z.P. Lu, and T.G. Nieh, Acta Mater. 147, 184. (2018).

    Article  Google Scholar 

  9. S. Zhao, G.M. Stocks, and Y. Zhang, Phys. Chem. Chem. Phys. 18, 24043. (2016).

    Article  Google Scholar 

  10. J. Dąbrowa, and M. Danielewski, Metals 10, 347. (2020).

    Article  Google Scholar 

  11. G.S. Was, Fundamentals of Radiation Materials Science (Springer, New York, 2017).

    Book  Google Scholar 

  12. D. Morgan, and Y. Zhang, Phys. Rev. B 101, 136101. (2020).

    Article  Google Scholar 

  13. H. Guan, S. Huang, J. Ding, F. Tian, Q. Xu, and J. Zhao, Acta Mater. 187, 122. (2020).

    Article  Google Scholar 

  14. A. Manzoor, Y. Zhang, and D.S. Aidhy, Comput. Mater. Sci. 198, 110669. (2021).

    Article  Google Scholar 

  15. A. Manzoor, G. Arora, B. Jerome, N. Linton, B. Norman, and D.S. Aidhy, Front. Mater. 8, 673574. (2021).

    Article  Google Scholar 

  16. C. Li, J. Yin, K. Odbadrakh, B.C. Sales, S.J. Zinkle, G.M. Stocks, and B.D. Wirth, J. Appl. Phys. 125, 155103. (2019).

    Article  Google Scholar 

  17. T.R. Paul, I.V. Belova, and G.E. Murch, Mater. Chem. Phys. 210, 301. (2018).

    Article  Google Scholar 

  18. D.R. Trinkle, Phys. Rev. Lett. 121, 235901. (2018).

    Article  Google Scholar 

  19. K. Mussawisade, T. Wichmann, and K.W. Kehr, J. Phys. Condens. Matter 9, 1181. (1997).

    Article  Google Scholar 

  20. S.L. Thomas, and S. Patala, Acta Mater. 196, 144. (2020).

    Article  Google Scholar 

  21. Y. Osetsky, A.V. Barashev, L.K. Béland, Z. Yao, K. Ferasat, and Y. Zhang, NPJ Comput. Mater. 6, 38. (2020).

    Article  Google Scholar 

  22. S. Zhao, T. Egami, G.M. Stocks, and Y. Zhang, Phys. Rev. Mater. 2, 013602. (2018).

    Article  Google Scholar 

  23. B. Xing, X. Wang, W.J. Bowman, and P. Cao, Scripta Mater. 210, 114450. (2022).

    Article  Google Scholar 

  24. Y.N. Osetsky, L.K. Béland, A.V. Barashev, and Y. Zhang, Curr. Opin. Solid State Mater. Sci. 22, 65. (2018).

    Article  Google Scholar 

  25. S. Zhao, Y. Osetsky, and Y. Zhang, Acta Mater. 128, 391. (2017).

    Article  Google Scholar 

  26. M.S. Daw, and M. Chandross, Phys. Rev. Mater. 5, 043603. (2021).

    Article  Google Scholar 

  27. B. Xu, J. Zhang, S. Ma, Y. Xiong, S. Huang, J.J. Kai, and S. Zhao, Acta Mater. 234, 118051. (2022).

    Article  Google Scholar 

  28. S. Wei, F. He, and C.C. Tasan, J. Mater. Res. 33, 2924. (2018).

    Article  Google Scholar 

  29. A. Tamm, A. Aabloo, M. Klintenberg, M. Stocks, and A. Caro, Acta Mater. 99, 307. (2015).

    Article  Google Scholar 

  30. X. Huang, L. Liu, X. Duan, W. Liao, J. Huang, H. Sun, and C. Yu, Mater. Des. 202, 109560. (2021).

    Article  Google Scholar 

  31. W. Feng, Y. Qi, and S. Wang, Metals 7, 482. (2017).

    Article  Google Scholar 

  32. Z. Shen, J.-P. Du, S. Shinzato, Y. Sato, P. Yu, and S. Ogata, Comput. Mater. Sci. 198, 110670. (2021).

    Article  Google Scholar 

  33. S. Zhao, J. Phase Equilib. Diffus. 42, 578. (2021).

    Article  Google Scholar 

  34. S. Zhao, Phys. Rev. Mater. 5, 103604. (2021).

    Article  Google Scholar 

  35. R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, and A.M. Minor, Nature 581, 283. (2020).

    Article  Google Scholar 

  36. A. Fernández-Caballero, J.S. Wróbel, P.M. Mummery, and D. Nguyen-Manh, J. Phase Equilib. Diffus. 38, 391. (2017).

    Article  Google Scholar 

  37. Y. Wu, F. Zhang, X. Yuan, H. Huang, X. Wen, Y. Wang, M. Zhang, H. Wu, X. Liu, H. Wang, S. Jiang, and Z. Lu, J. Mater. Sci. Technol. 62, 214. (2021).

    Article  Google Scholar 

  38. Q.-J. Li, H. Sheng, and E. Ma, Nat. Commun. 10, 3563. (2019).

    Article  Google Scholar 

  39. J. Ding, Q. Yu, M. Asta, and R.O. Ritchie, Proc. Natl. Acad. Sci. U.S.A. 115, 8919. (2018).

    Article  Google Scholar 

  40. B. Schönfeld, C.R. Sax, J. Zemp, M. Engelke, P. Boesecke, T. Kresse, T. Boll, T. Al-Kassab, O.E. Peil, and A.V. Ruban, Phys. Rev. B 99, 014206. (2019).

    Article  Google Scholar 

  41. J.G. Goiri, S.K. Kolli, and A. Van der Ven, Phys. Rev. Mater 3, 093402. (2019).

    Article  Google Scholar 

  42. S. Mahmoud, and N. Mousseau, Materialia 4, 575. (2018).

    Article  Google Scholar 

  43. X. Zhang, and M.H.F. Sluiter, Phys. Rev. Mater. 3, 095601. (2019).

    Article  Google Scholar 

  44. S. Plimpton, J. Comput. Phys. 117, 1. (1995).

    Article  Google Scholar 

  45. X.W. Zhou, R.A. Johnson, and H.N.G. Wadley, Phys. Rev. B 69, 144113. (2004).

    Article  Google Scholar 

  46. S. Chen, Z.H. Aitken, S. Pattamatta, Z. Wu, Z.G. Yu, D.J. Srolovitz, P.K. Liaw, and Y.-W. Zhang, Nat. Commun. 12, 4953. (2021).

    Article  Google Scholar 

  47. J.M. Cowley, Phys. Rev. 138, A1384. (1965).

    Article  Google Scholar 

  48. Y. Zhang, A. Manzoor, C. Jiang, D. Aidhy, and D. Schwen, Comput. Mater. Sci. 190, 110308. (2021).

    Article  Google Scholar 

  49. A.V. Ruban, Phys. Rev. B 93, 134115. (2016).

    Article  Google Scholar 

  50. G. Henkelman, B.P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901. (2000).

    Article  Google Scholar 

  51. K. Compaan, and Y. Haven, Trans. Faraday Soc. 52, 786. (1956).

    Article  Google Scholar 

  52. M.I. Mendelev, and Y. Mishin, Phys. Rev. B 80, 144111. (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the start-up funds provided by the University of Wisconsin Madison. We also thank the University of Wisconsin Center for High-Throughput Computing and the Idaho National Laboratory High-Performance Computing (HPC) Center for their support in providing the computation resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Zhang.

Ethics declarations

Conflict of interest

The authors claim no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoor, A., Zhang, Y. Influence of Defect Thermodynamics on Self-Diffusion in Complex Concentrated Alloys with Chemical Ordering. JOM 74, 4107–4120 (2022). https://doi.org/10.1007/s11837-022-05477-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05477-9

Navigation