Skip to main content

Advertisement

Log in

Hydrogen-Induced Delayed Fracture in a 1.5 GPa Dual-Phase Steel via Coalescence of Surface and Sub-surface Cracks

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hydrogen embrittlement susceptibility of a 1.5 GPa class ferrite/martensite dual-phase steel was evaluated using the U-bend test. Hydrogen-induced delayed fracture occurs via the coalescence of surface and sub-surface cracks. While surface cracking is caused by the growth of pre-existing cracks formed during the U-bending, sub-surface cracks are formed by tensile stress that evolved during reloading. Despite the non-monotonic stress gradient across the U-bent cross-section, the crack propagation mechanism for surface and sub-surface cracks is identical.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. OECD: CO2 Emissions from Fuel Combustion 2019, Organisation for Economic Co-operation and Development, Paris, 2019.

    Google Scholar 

  2. J. Hirsch: Mater. Trans., 2011, vol. 52, pp. 818–24.

    Article  CAS  Google Scholar 

  3. D. Raabe, C.C. Tasan, and E.A. Olivetti: Nature, 2019, vol. 575, pp. 64–74.

    Article  CAS  Google Scholar 

  4. M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, and D. Raabe: Acta Mater., 2014, vol. 70, pp. 174–87.

    Article  CAS  Google Scholar 

  5. M. Wang, E. Akiyama, and K. Tsuzaki: Corros. Sci., 2006, vol. 48, pp. 2189–202.

    Article  CAS  Google Scholar 

  6. N.J. Petch and P. Stables: Nature, 1952, vol. 169, pp. 842–43.

    Article  Google Scholar 

  7. Y. Shibayama, T. Hojo, and E. Akiyama: ISIJ Int., 2021, vol. 61, pp. 1104–111.

    Article  CAS  Google Scholar 

  8. H. Fu, W. He, Z. Mi, Y. Yan, J. Zhang, and J. Li: Corros. Sci., 2022, vol. 209, p. 110782.

    Article  CAS  Google Scholar 

  9. H. Li, J. Venezuela, Z. Qian, Q. Zhou, Z. Shi, M. Yan, R. Knibbe, M. Zhang, F. Dong, and A. Atrens: Corros. Sci., 2021, vol. 184, p. 109360.

    Article  CAS  Google Scholar 

  10. J. Venezuela, F.Y. Lim, L. Liu, S. James, Q. Zhou, R. Knibbe, M. Zhang, H. Li, F. Dong, M.S. Dargusch, and A. Atrens: Corros. Sci., 2020, vol. 171, p. 108726.

    Article  CAS  Google Scholar 

  11. Y. Shibayama, T. Hojo, M. Koyama, H. Saitoh, A. Shiro, R. Yasuda, T. Shobu, T. Matsuno, and E. Akiyama: ISIJ Int., 2021, vol. 61, pp. 1322–329.

    Article  CAS  Google Scholar 

  12. K. Takashima, T. Nishimura, K. Yokoyama, and Y. Funakawa: ISIJ Int., 2019, vol. 59, pp. 1676–682.

    Article  CAS  Google Scholar 

  13. T. Depover, T. Hajilou, D. Wan, D. Wang, A. Barnoush, and K. Verbeken: Mater. Sci. Eng. A, 2019, vol. 754, pp. 613–21.

    Article  CAS  Google Scholar 

  14. D. Asari, S. Mizokami, M. Fukahori, and K. Takai: Mater. Sci. Eng. A, 2020, vol. 780, p. 139209.

    Article  CAS  Google Scholar 

  15. Q. Liu, Q. Zhou, J. Venezuela, M. Zhang, and A. Atrens: Corros. Sci., 2017, vol. 125, pp. 114–38.

    Article  CAS  Google Scholar 

  16. H. Li, J. Venezuela, Q. Zhou, V. Luzin, M. Yan, Z. Shi, R. Knibbe, M. Zhang, F. Dong, M.S. Dargusch, and A. Atrens: Mater. Today Commun., 2021, vol. 26, p. 101887.

    Article  CAS  Google Scholar 

  17. R.S. Varanasi, M. Koyama, Y. Shibayama, and E. Akiyama: Mater. Sci. Eng. A, 2022, vol. 857, p. 144021.

    Article  CAS  Google Scholar 

  18. S. Zaefferer and N.-N. Elhami: Acta Mater., 2014, vol. 75, pp. 20–50.

    Article  CAS  Google Scholar 

  19. H.W. Swift: J. Mech. Phys. Solids, 1952, vol. 1, pp. 1–8.

    Article  Google Scholar 

  20. V. Atreya, C. Bos, and M.J. Santofimia: Scr. Mater., 2021, vol. 202, p. 114032.

    Article  CAS  Google Scholar 

  21. T. Depover, S. Hertelé, and K. Verbeken: Eng. Fract. Mech., 2019, vol. 221, p. 106704.

    Article  Google Scholar 

  22. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–746.

    Article  Google Scholar 

  23. L. Cho, P.E. Bradley, D.S. Lauria, M.L. Martin, M.J. Connolly, J.T. Benzing, E.J. Seo, K.O. Findley, J.G. Speer, and A.J. Slifka: Acta Mater., 2021, vol. 206, p. 116635.

    Article  CAS  Google Scholar 

  24. A. Shibata, T. Murata, H. Takahashi, T. Matsuoka, and N. Tsuji: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5685–696.

    Article  Google Scholar 

  25. A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 5182–189.

    Article  CAS  Google Scholar 

  26. Y.H. Kim and J.W. Morris: Metall. Trans. A, 1983, vol. 14, pp. 1883–888.

    Article  Google Scholar 

  27. L. Schemmann, S. Zaefferer, D. Raabe, F. Friedel, and D. Mattissen: Acta Mater., 2015, vol. 95, pp. 386–98.

    Article  CAS  Google Scholar 

  28. F.G. Caballero, A. García-Junceda, C. Capdevila, and C.G. de Andrés: Mater. Trans., 2006, vol. 47, pp. 2269–276.

    Article  CAS  Google Scholar 

  29. S. Morooka, O. Umezawa, S. Harjo, K. Hasegawa, and Y. Toji: Tetsu-Hagane, 2012, vol. 98, pp. 311–19.

    Article  CAS  Google Scholar 

  30. R. Maeda, Z.-L. Wang, T. Ogawa, and Y. Adachi: Mater. Today Commun., 2020, vol. 25, p. 101658.

    Article  CAS  Google Scholar 

  31. Y. Li, R. Song, L. Jiang, and Z. Zhao: Mater. Sci. Eng. A, 2019, vol. 750, pp. 40–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the funding received from the project, JPNP14014, commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rama Srinivas Varanasi or Motomichi Koyama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 844 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varanasi, R.S., Koyama, M., Shibayama, Y. et al. Hydrogen-Induced Delayed Fracture in a 1.5 GPa Dual-Phase Steel via Coalescence of Surface and Sub-surface Cracks. Metall Mater Trans A 54, 2989–2997 (2023). https://doi.org/10.1007/s11661-023-07096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07096-8

Navigation