Skip to main content
Log in

Characterization of Hydrogen-Related Fracture Behavior in As-Quenched Low-Carbon Martensitic Steel and Tempered Medium-Carbon Martensitic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hydrogen-related fracture behaviors in low-carbon (Fe-0.1wtpctC) and medium-carbon (Fe-0.4wtpctC) martensitic steels were characterized through crystallographic orientation analysis using electron backscattering diffraction. The martensitic steels with lower strength (Fe-0.1C specimen or Fe-0.4C specimen tempered at higher temperature) exhibited transgranular fracture, where fractured surfaces consisted of dimples and quasi-cleavage patterns. Crystallographic orientation analysis revealed that several of the micro-cracks that formed around the prior austenite grain boundaries propagated along {011} planes. In contrast, fracture surface morphologies of the martensitic steels with higher strength (Fe-0.4C specimen tempered at lower temperature) appeared to be intergranular-like. Crystallographic orientation analysis demonstrated that, on a microscopic level, the fracture surfaces comprised the facets parallel to {011} planes. These results suggest that the hydrogen-related fractures in martensitic steels with higher strength are not exactly intergranular at the prior austenite grain boundaries, but they are transgranular fractures propagated along {011} planes close to the prior austenite grain boundaries. A description of the mechanism of hydrogen-related fracture is proposed based on the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.R. Marder and G. Krauss: Trans. ASM, 1967, vol. 60, pp. 651-60.

    Google Scholar 

  2. J.M. Marder and A.R. Marder: Trans. ASM, 1969, vol. 62, pp. 1-10.

    Google Scholar 

  3. S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen: Acta Mater., 2006, vol. 54, pp. 5323-31.

    Article  Google Scholar 

  4. Y.H. Kim and J.W. Morris Jr: Metall. Trans. A, 1983, vol. 14A, pp. 1883-88.

    Article  Google Scholar 

  5. Y.H. Kim, H.J. Kim, and J.W. Morris Jr: Metall. Trans. A, 1986, vol. 17A, pp.1157-64.

    Article  Google Scholar 

  6. A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 5182-89.

    Article  Google Scholar 

  7. A. Shibata, H. Takahashi, and N. Tsuji: ISIJ Int., 2012, vol. 52, pp. 208-12.

    Article  Google Scholar 

  8. S.K. Banerji, C.J. McMahon Jr, and H.C. Feng: Metall. Trans. A, 1978, vol. 9A, pp. 237-47.

    Article  Google Scholar 

  9. B.D. Craig and G. Krauss: Metall. Trans. A, 1980, vol. 11A, pp. 1799-1808.

    Article  Google Scholar 

  10. M. Wang, E. Akiyama, and K. Tsuzaki: Mater. Sci. Eng. A, 2005, vol. A398, pp. 37-46.

    Article  Google Scholar 

  11. M. Wang, E. Akiyama, and K. Tsuzaki: Corros. Sci., 2007, vol. 49, pp. 4081-97.

    Article  Google Scholar 

  12. G. Wang, Y. Yan, J. Huang, Y. Su, L. Qiao: Corros. Sci., 2013, vol. 77, pp. 273-80.

    Article  Google Scholar 

  13. M. Yamaguchi, J. Kameda, K. Ebihara, M. Itakura, H. Kaburaki: Philos. Mag., 2012, vol. 92, pp. 1349-68.

    Article  Google Scholar 

  14. K.N. Solanki, M.A. Tschopp, M.A. Bhatia, N.R. Rhodes: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1365-75.

    Article  Google Scholar 

  15. M. Nagumo and H. Matsuda: Philos. Mag. A, 2002, vol. 82, pp. 3415-25.

    Article  Google Scholar 

  16. W.W. Gerberich, T. Livne, X.F. Chen, and M. Kaczorowski: Metall. Trans. A, 1988, vol. 19A, pp. 1319-34.

    Article  Google Scholar 

  17. A. Oudriss, A. Fleurentin, G. Courlit, E. Conforto, C. Berziou, C. Rébéré, S. Cohendoz, J.M. Sobrino, J. Creus, X. Feaugas: Mater. Sci. Eng. A, 2014, vol. A598, pp. 420-28.

    Article  Google Scholar 

  18. S.L.I. Chan, H.L. Lee, J.R. Yang: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 2579-86.

    Article  Google Scholar 

  19. D.P. Escobar, T. Depover, E. Wallaert, L. Duprez, M. Verhaege, K. Verbeken: Corros. Sci., 2012, vol. 65, pp. 199-208.

    Article  Google Scholar 

  20. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789-99.

    Article  Google Scholar 

  21. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279-88.

    Article  Google Scholar 

  22. A. Nagao, K. Hayashi, K. Oi, S. Mitao: ISIJ Int., 2012, vol. 52, pp. 213-21.

    Article  Google Scholar 

  23. I.M. Robertson, T. Tabata, W. Wei, F. Heubaum, and H.K. Birnbaum: Scripta Metall., 1984, vol. 18, pp. 841-46.

    Article  Google Scholar 

  24. M.I. Luppo and J. Ovejero-Garcia: Corros. Sci., 1991, vol. 32, pp. 1125-36.

    Article  Google Scholar 

  25. K. Takai, J. Seki, and Y. Homma: Mater. Trans. JIM, 1995, vol. 36, pp. 1134-39.

    Article  Google Scholar 

  26. E. Sirois and H.K. Birnbaum: Acta Metall. Mater., 1992, vol. 40, pp. 1377-85.

    Article  Google Scholar 

  27. H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng. A, 1994, vol. A176, pp. 191-202.

    Article  Google Scholar 

  28. I.A. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, K.E. Nygren: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1085-03.

    Article  Google Scholar 

  29. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum: Acta Mater., 1998, vol. 46, pp. 1749-57.

    Article  Google Scholar 

  30. I.M. Robertson: Eng. Frac. Mech., 1999, vol. 64, pp. 649-73.

    Article  Google Scholar 

  31. P. Sofronis and I.M. Robertson: Philos. Mag. A, 2002, vol. 82, pp. 3405-13.

    Article  Google Scholar 

  32. M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis, and I.M. Robertson: Acta Mater., 2011, vol. 59, pp. 1601-06.

    Article  Google Scholar 

  33. M.L. Martin, I.M. Robertson, and P. Sofronis: Acta Mater., 2011, vol. 59, pp. 3680-87.

    Article  Google Scholar 

  34. M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 2739-45.

    Article  Google Scholar 

  35. A. Nagao, M.L. Martin, M. Dadfarnia, P. Sofronis, I.M. Robertson: Acta Mater., 2014, vol. 74, pp. 244-54.

    Article  Google Scholar 

  36. S. Nambu, M. Michiuchi, Y. Ishimoto, K. Asakura, J. Inoue, and T. Koseki: Scripta Mater., 2009, vol. 60, pp. 221-24.

    Article  Google Scholar 

  37. M. Michiuchi, S. Nambu, Y. Ishimoto, J. Inoue, and T. Koseki: Acta Mater., 2009, vol. 57, pp. 5283-91.

    Article  Google Scholar 

  38. Y. Takeda and C.J. McMahon Jr: Metall. Trans. A, 1981, vol. 12A, pp. 1255-66.

    Article  Google Scholar 

  39. S.P. Lynch: Acta Metall., 1984, vol. 32, pp. 79-90.

    Article  Google Scholar 

  40. J.P. Hirth: Scripta Metall., 1993, vol. 28, pp. 703-07.

    Article  Google Scholar 

  41. W.R. Tyson, R.A. Ayres, and D.F. Stein: Acta Metall., 1973, vol. 21, pp. 621-27.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Grant-in-Aid for Scientific Research on Innovative Area, “Bulk Nanostructured Metals” (Area No. 2201), the Grant-in-Aid for Scientific Research (A) (No. 24246114), the Grant-in-Aid for Young Scientists (A) (No. 24686082), the Grant-in-Aid for Challenging Exploratory Research (No. 24656440), and the Elements Strategy Initiative for Structural Materials (ESISM), all through the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. AS and NT were also supported by the ISIJ Research Promotion Grant. The authors greatly appreciate all the supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinobu Shibata.

Additional information

Manuscript submitted on January 5, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibata, A., Murata, T., Takahashi, H. et al. Characterization of Hydrogen-Related Fracture Behavior in As-Quenched Low-Carbon Martensitic Steel and Tempered Medium-Carbon Martensitic Steel. Metall Mater Trans A 46, 5685–5696 (2015). https://doi.org/10.1007/s11661-015-3176-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3176-x

Keywords

Navigation