Skip to main content
Log in

Effect of High Magnetic Field on Microstructure Evolution, Solute Distribution, and Crystallography in Directionally Solidified Cu–Ge Peritectic Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of an axial high magnetic field on the microstructure evolution, solute distribution, and preferred crystallography relationship in the directionally solidified Cu–15.6 wt pctGe peritectic alloy were investigated. According to the experimental results, the application of a high magnetic field resulted in the columnar-to-equiaxed transition (CET) of the primary dendrites, the change of peritectic phase fraction, and the modification of the crystallography relationship between peritectic two phases. Numerical simulations were performed that revealed that the thermoelectric (TE) magnetic force imposed on the dendrite could be responsible for the occurrence of the CET. It was also found that the TE magnetic convection formed in the liquid-α-ξ phase junction region and obviously influenced the solute distribution. Indeed, under lower magnetic fields (B < 0.5 T), the TE magnetic convection increased with the magnetic field and made the Ge solute float upwards. However, under higher magnetic fields (B > 0.5 T), the TE magnetic convection gradually decreased and was compressed to the peritectic reaction interface with the increase of the magnetic field. As a result, the lower magnetic field decreased the fraction of the peritectic ξ-phase because of the solute floating effect while the higher magnetic field increased the fraction of the peritectic ξ-phase by promoting the peritectic interface reaction. Moreover, due to the formation of the TE magnetic force and the magnetization force in the peritectic two phases, the crystallography orientation relationship between the peritectic two phases was modified.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.W. Kerr and W. Kurz: Int. Mater. Rev., 1996, vol. 41, pp. 129–64.

    Article  CAS  Google Scholar 

  2. Y.Z. Chen, F. Liu, G.C. Yang, and Y.H. Zhou: J. Mater. Res., 2010, vol. 25, p. 1025.

    Article  Google Scholar 

  3. Y.K. Xu, Z.H. Huang, Y.N. Chen, J.X. Xiao, J.M. Hao, X.H. Hou, and L. Liu: Materials, 2020, vol. 13, p. 911.

    Article  CAS  Google Scholar 

  4. C. Brito, C.A. Siqueira, J.E. Spinelli, and A. Garcia: J. Phys. Chem. Solids, 2012, vol. 73, pp. 1173–81.

    Article  CAS  Google Scholar 

  5. X.F. Ding, J.P. Lin, L.Q. Zhang, Y.Q. Su, G.J. Hao, and G.L. Chen: Intermetallics, 2011, vol. 19, pp. 1115–19.

    Article  CAS  Google Scholar 

  6. Y.H. Cai, F. Wang, Z.H. Zhang, and B. Nestler: Acta Mater., 2021, vol. 219, p. 117223.

    Article  CAS  Google Scholar 

  7. L.S. Luo, Y.Q. Su, J.J. Guo, X.Z. Li, S.M. Li, H. Zhong, L. Liu, and H.Z. Fu: J. Alloys Compd., 2008, vol. 461, pp. 121–27.

    Article  CAS  Google Scholar 

  8. Q.L. Rao, X.L. Fan, D. Shu, and C.C. Wu: J. Alloys Compd., 2008, vol. 461, pp. L29-33.

    Article  CAS  Google Scholar 

  9. B.A. Jensen, W. Tang, X.B. Liu, A.I. Nolte, G.Y. Ouyang, K.W. Dennis, and J. Cui: Acta Mater., 2019, vol. 181, pp. 595–602.

    Article  CAS  Google Scholar 

  10. H. Zhong, S.M. Li, H.Y. Lü, L. Liu, G.R. Zou, and H.Z. Fu: J. Cryst. Growth, 2008, vol. 310, pp. 3366–71.

    Article  CAS  Google Scholar 

  11. Y.Z. Chen, F. Liu, G.C. Yang, N. Liu, C.L. Yang, and Y.H. Zhou: Scripta Mater., 2007, vol. 57, pp. 779–82.

    Article  CAS  Google Scholar 

  12. F. Kohler, L. Germond, J.D. Wagnière, and M. Rappaz: Acta Mater., 2009, vol. 57, pp. 56–68.

    Article  CAS  Google Scholar 

  13. Y.Z. Chen, K. Wang, X.H. Shi, X.Y. Ma, and F. Liu: J. Alloys Compd., 2014, vol. 585, pp. 260–66.

    Article  CAS  Google Scholar 

  14. S. Dobler, T.S. Lo, M. Plapp, A. Karma, and W. Kurz: Acta Mater., 2004, vol. 52, pp. 2795–2808.

    Article  CAS  Google Scholar 

  15. P. Peng, L. Lu, W.C. Zhang, J.T. Wang, and S.D. Zhou: J. Alloys Compd., 2021, vol. 872, p. 159558.

    Article  CAS  Google Scholar 

  16. L.S. Wang, J. Shen, Y.L. Xiong, Y.J. Du, and H.Z. Fu: Acta Metall. Sin. (Engl. Lett.), 2014, vol. 27, pp. 585–92.

    Article  CAS  Google Scholar 

  17. S.J. Wang, L.S. Luo, Y.Q. Su, F.Y. Dong, J.J. Guo, and H.Z. Fu: J. Mater. Res., 2013, vol. 28, pp. 1372–77.

    Article  CAS  Google Scholar 

  18. S. Asai: Sci. Technol. Adv. Mater., 2000, vol. 1, pp. 191–200.

    Article  CAS  Google Scholar 

  19. Y.H. Liu, B.M. Zheng, T. Zhang, Y.G. Chen, J.H. Liu, Z. Wang, and X.Z. Gong: Electrochim. Acta, 2022, vol. 432, p. 141201.

    Article  CAS  Google Scholar 

  20. I. Kaldre, Y. Fautrelle, J. Etay, A. Bojarevics, and L. Buligins: J. Alloys Compd., 2013, vol. 571, pp. 50–55.

    Article  CAS  Google Scholar 

  21. Z. Shen, M.H. Peng, D.S. Zhu, T.X. Zheng, Y.B. Zhong, W.L. Ren, C.J. Li, W.D. Xuan, and Z.M. Ren: J. Mater. Sci. Technol., 2019, vol. 35, pp. 568–77.

    Article  CAS  Google Scholar 

  22. P. Mazumder, R. Trivedi, and A. Karma: Metall. Mater. Trans. A, 2000, vol. 31, pp. 1233–46.

    Article  Google Scholar 

  23. S.N. Tewari, R. Shah, and H. Song: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1535–44.

    Article  CAS  Google Scholar 

  24. T. Alboussiere, A.C. Neubrand, J.P. Garandet, and R. Moreau: Magnetohydrodynamics, 1995, vol. 31, pp. 228–35.

    Google Scholar 

  25. P. Lehmann, R. Moreau, D. Camel, and R. Bolcato: Acta Mater., 1998, vol. 46, pp. 4067–79.

    Article  CAS  Google Scholar 

  26. R. Moreau, O. Laskar, M. Tanaka, and D. Camel: Mater. Sci. Eng. A, 1993, vol. 173, pp. 93–100.

    Article  Google Scholar 

  27. J. Wang, Y. Fautrelle, H. Nguyen-Thi, G. Reinhart, H.L. Liao, X. Li, Y.B. Zhong, and Z.M. Ren: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1169–79.

    Article  Google Scholar 

  28. X. Li, Z.Y. Lu, Y. Fautrelle, A. Gagnoud, R. Moreau, and Z.M. Ren: Sci. Rep., 2016, vol. 6, p. 37872.

    Article  CAS  Google Scholar 

  29. Z.Y. Lu, Z.M. Ren, Y. Fautrelle, and X. Li: ISIJ Int., 2018, vol. 58, pp. 505–14.

    Article  CAS  Google Scholar 

  30. Y.Q. Su, S.J. Wang, L.S. Luo, J.C. Jie, J.J. Guo, and H.Z. Fu: J. Alloys Compd., 2012, vol. 539, pp. 44–49.

    Article  CAS  Google Scholar 

  31. Y. Hou, Z.Q. Zhang, W.D. Xuan, J. Wang, J.B. Yu, and Z.M. Ren: Acta Metall. Sin. (English Lett.), 2018, vol. 31, pp. 681–91.

    Article  CAS  Google Scholar 

  32. F. Baltaretu, J. Wang, S. Letout, Z.M. Ren, X.J. Li, O. Budenkova, and Y. Fautrelle: Magnetohydrodynamics, 2015, vol. 51, pp. 45–55.

    Article  Google Scholar 

  33. F.J. Blatt, M. Garber, and B.W. Scott: Phys. Rev., 1964, vol. 136, pp. A729-737.

    Article  Google Scholar 

  34. A.V. Gold, D.K.C. Macdonald, W.B. Pearson, and I.M. Templeton: Philos. Mag., 1960, vol. 5, pp. 765–86.

    Article  CAS  Google Scholar 

  35. X. Li, Y. Fautrelle, and Z.M. Ren: Acta Mater., 2007, vol. 55, pp. 3803–13.

    Article  CAS  Google Scholar 

  36. X. Li, A. Gagnoud, Y. Fautrelle, Z.M. Ren, R. Moreau, Y.D. Zhang, and C. Esling: Acta Mater., 2012, vol. 60, pp. 3321–32.

    Article  CAS  Google Scholar 

  37. X. Li, A. Gagnoud, J. Wang, X.L. Li, Y. Fautrelle, Z.M. Ren, X.G. Lu, G. Reinhart, and H. Nguyen-Thi: Acta Mater., 2014, vol. 73, pp. 83–96.

    Article  Google Scholar 

  38. D.F. Du, L. Hou, A. Gagnoud, Z.M. Ren, Y. Fautrelle, G.H. Cao, and X. Li: J. Alloys Compd., 2014, vol. 588, pp. 190–98.

    Article  CAS  Google Scholar 

  39. H. Liu, W.D. Xuan, X.L. Xie, C.J. Li, J. Wang, J.B. Yu, X. Li, Y.B. Zhong, and Z.M. Ren: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4193–4203.

    Article  Google Scholar 

  40. S. Liu and R. Trivedi: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3293–3304.

    Article  CAS  Google Scholar 

  41. S.N. Geng, P. Jiang, X.Y. Shao, L.Y. Guo, and X.S. Gao: J. Mater. Sci. Technol., 2020, vol. 46, pp. 50–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by the National Natural Science Foundation of China (Nos. 51904183 and 52130204), and the Independent Research and Development Project of State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University (No. SKLASS 2021-Z07), and the Science and Technology Commission of Shanghai Municipality (Nos. 19DZ2270200 and, 20511107700).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Hou or Xi Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Z., Hu, S., Wang, T. et al. Effect of High Magnetic Field on Microstructure Evolution, Solute Distribution, and Crystallography in Directionally Solidified Cu–Ge Peritectic Alloy. Metall Mater Trans A 54, 3186–3198 (2023). https://doi.org/10.1007/s11661-023-07087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07087-9

Navigation