Skip to main content
Log in

On the Unified Interaction Parameter Formalism and Its Application in Critical Reassessment of Pearlitic Transformation in Fe–C–Mn System

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The significance of local equilibria (LE) models in understanding phase transformations in multicomponent steels has been revisited and the necessity for a firsthand computational tool capable of estimating metastable ferrite–austenite and cementite-austenite phase boundaries along with possible LE modes has been realized. For this purpose, thermodynamically consistent Unified Interaction Parameter Formalism (UIPF) has been adopted owing to its computational simplicity. All the necessary parameters required for UIPF-based simulations in Fe–C–Mn system, have been evaluated in the present work. The UIPF-based framework has been shown to be a computationally simple yet an efficient tool for prediction of metastable phase boundaries at low temperatures and wide composition range in the Fe–C–Mn system, where most of the available commercial thermodynamic simulation packages have prediction limitation. The phase boundaries predicted using UIPF have been validated with those predicted by ThermoCalc®, wherever possible/available. Additionally, existing experimental data on growth rates, interlamellar spacing, and partitioning coefficients prevalent during pearlitic transformation in Fe–C–Mn systems have been used to validate the predictions by different LE models adopting UIPF, which in turn affirms the potential of UIPF in predicting thermodynamics and kinetics of phase transformation in Fe–C–Mn systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

In this work data from ThermoCalc® (commercially available software) has been used for validation purpose. Rest all of the data used/generated in the present work have been explicitly given within the manuscript.

Abbreviations

\(\alpha\) :

Ferrite

\(\gamma\) :

Austenite

\(\theta\) :

Cementite

\({G}_{\text{m}}^{\phi }\) :

Integral molar Gibbs energy of a phase, \(\phi\)

\({G}_{i}^{0\phi }\) :

Standard Gibbs energy of component i in phase \(\phi\), in Raultian standard state

\({x}_{i}^{\phi }\) :

Mole fraction of component i in phase \(\phi\)

\({G}_{\text{m}}^{E\phi }\) :

Integral molar excess Gibbs energy

\(R\) :

Universal gas constant

\(T\) :

Absolute temperature

\({\overline{G} }_{i}^{\phi }\) :

Partial molar Gibbs energy of component i in phase \(\phi\)

\({\mu }_{i}^{\phi }\) :

Chemical potential of component i in phase \(\phi\)

\({a}_{i}^{\phi }\) :

Activity of component i in phase \(\phi\)

\({\gamma }_{i}^{\phi }\) :

Activity coefficient of component i in phase \(\phi\)

\({\overline{G} }_{i}^{E\phi }\) :

Partial molar excess free energy of component i in phase \(\phi\)

\({\gamma }_{i}^{0}\) :

Activity coefficient of component i at infinite dilution

\({\varepsilon }_{i}^{j\phi }\) :

First order interaction parameters

\({G}_{iH}^{0\phi }\) :

Standard Gibbs energy of component i in phase \(\phi\), in Henrian standard state

\({u}_{\text{M}}\) :

U-fraction of substitutional solute M

\(v\) :

Growth rate of pearlite

\({D}_{C}^{\gamma }\) :

Diffusivity of carbon in austenite

\(S\) :

Interlamellar spacing

\({S}^{\alpha }\) :

Thickness of ferrite lamella

\({S}^{\theta }\) :

Thickness of cementite lamella

\({S}_{C}\) :

Critical interlamellar spacing

\(a\) :

Proportionality factor

\({C}_{i}^{\phi }\) :

Concentration in weight percent of component ‘i’ in phase \(\phi\)

\({C}_{i}^{\gamma /\alpha }\) :

Concentration in weight percent of component ‘i’ in phase \(\gamma\) that is in equilibrium with phase \(\alpha\)

\({C}_{i}^{\gamma /\theta }\) :

Concentration in weight percent of component ‘i’ in phase \(\gamma\) that is in equilibrium with phase \(\theta\)

\(\sigma\) :

Interfacial energy between ferrite and cementite

\({V}_{\text{m}}\) :

Molar volume

References

  1. H. Bhadeshia and R. Honeycombe: Steels: Microstructure and Properties, 3rd ed. Butterworth-Heinemann, Oxford, 2006, pp. 53–65.

    Google Scholar 

  2. H.K.D.H. Bhadeshia: Curr. Opin. Solid State Mater. Sci., 2016, vol. 20, pp. 396–400.

    Article  CAS  Google Scholar 

  3. Z. Dai, H. Chen, R. Ding, Q. Lu, C. Zhang, Z. Yang, and S. van der Zwaag: Mater. Sci. Eng. R, 2021, vol. 143, 100590.

    Article  Google Scholar 

  4. Z. Dai, X. Wang, J. He, Z. Yang, C. Zhang, and H. Chen: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3168–174.

    Article  Google Scholar 

  5. Z. Dai, Z. Yang, C. Zhang, and H. Chen: Acta Mater., 2020, vol. 200, pp. 597–607.

    Article  CAS  Google Scholar 

  6. N.A. Razik, G.W. Lorimer, and N. Ridley: Acta Metall., 1974, vol. 22, pp. 1249–258.

    Article  CAS  Google Scholar 

  7. S.A. Al-Salman, G.W. Lorimer, and N. Ridley: Metall. Trans. A, 1979, vol. 10A, pp. 1703–709.

    Article  CAS  Google Scholar 

  8. N.A. Razik, G.W. Lorimer, and N. Ridley: Metall. Trans. A, 1976, vol. 7A, pp. 209–14.

    Article  CAS  Google Scholar 

  9. N. Ridley, M.A. Malik, and G.W. Lorimer: Mater. Charact., 1990, vol. 25, pp. 125–41.

    Article  CAS  Google Scholar 

  10. S.A. Al-Salman, G.W. Lorimer, and N. Ridley: Acta Metall., 1979, vol. 27, pp. 1391–400.

    Article  CAS  Google Scholar 

  11. C. Capdevila, F.G. Caballero, and C. García De Andrés: Acta Mater., 2002, vol. 50, pp. 4629–641.

    Article  CAS  Google Scholar 

  12. R.C. Sharma, G.R. Purdy, and J.S. Kirkaldy: Metall. Trans. A, 1979, vol. 10A, pp. 1129–139.

    Article  CAS  Google Scholar 

  13. M.M. Aranda, R. Rementeria, J. Poplawsky, E. Urones-Garrote, and C. Capdevila: Scr. Mater., 2015, vol. 104, pp. 67–70.

    Article  CAS  Google Scholar 

  14. A.S. Pandit and H.K.D.H. Bhadeshia: Proc. R. Soc. A, 2011, vol. 467, pp. 508–21.

    Article  CAS  Google Scholar 

  15. A.S. Pandit and H.K.D.H. Bhadeshia: Proc. R. Soc. A, 2011, vol. 467, pp. 2948–961.

    Article  CAS  Google Scholar 

  16. S.K. Tewari and R.C. Sharma: Metall. Trans. A, 1985, vol. 16A, pp. 597–603.

    Article  CAS  Google Scholar 

  17. M. Hillert: Scr. Mater., 2002, vol. 46, pp. 447–53.

    Article  CAS  Google Scholar 

  18. H.S. Zurob, C.R. Hutchinson, Y. Bréchet, H. Seyedrezai, and G.R. Purdy: Acta Mater., 2009, vol. 57, pp. 2781–792.

    Article  CAS  Google Scholar 

  19. M. Gouné, F. Danoix, J. Ågren, Y. Bréchet, C.R. Hutchinson, M. Militzer, G. Purdy, S. Van Der Zwaag, and H. Zurob: Mater. Sci. Eng. R, 2015, vol. 92, pp. 1–38.

    Article  Google Scholar 

  20. C.R. Hutchinson, H.S. Zurob, and Y. Bréchet: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1711–720.

    Article  CAS  Google Scholar 

  21. J.B. Gilmour, G.R. Purdy, and J.S. Kirkaldy: Metall. Trans, 1972, vol. 3, pp. 1455–464.

    Article  CAS  Google Scholar 

  22. M. Enomoto, S. Li, Z.N. Yang, C. Zhang, and Z.G. Yang: Calphad, 2018, vol. 61, pp. 116–25.

    Article  CAS  Google Scholar 

  23. G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara, and T. Maki: Acta Mater., 2007, vol. 55, pp. 5027–038.

    Article  CAS  Google Scholar 

  24. A. Kwiatkowski da Silva, G. Inden, A. Kumar, D. Ponge, B. Gault, and D. Raabe: Acta Mater., 2018, vol. 147, pp. 165–75.

    Article  CAS  Google Scholar 

  25. M. Hillert and J. Ågren: Scr. Mater., 2004, vol. 50, pp. 697–699.

    Article  CAS  Google Scholar 

  26. M. Hillert and J. Ågren: Scr. Mater., 2005, vol. 52, pp. 87–8.

    Article  CAS  Google Scholar 

  27. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–622.

    Article  CAS  Google Scholar 

  28. Z. Dai, R. Ding, Z. Yang, C. Zhang, and H. Chen: Acta Mater., 2018, vol. 152, pp. 288–99.

    Article  CAS  Google Scholar 

  29. S. Tripathy, P.S.M. Jena, V.K. Sahu, S.K. Sarkar, S. Ahlawat, A. Biswas, B. Mahato, S. Tarafder, and S.G. Chowdhury: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 1806–820.

    Article  Google Scholar 

  30. S. Tripathy, V.K. Sahu, P.S.M. Jena, S. Tarafder, and S.G. Chowdhury: Mater. Sci. Eng. A, 2022, vol. 841, 143034.

    Article  CAS  Google Scholar 

  31. G. Miyamoto, H. Usuki, Z.D. Li, and T. Furuhara: Acta Mater., 2010, vol. 58, pp. 4492–502.

    Article  CAS  Google Scholar 

  32. C.R. Hutchinson, R.E. Hackenberg, and G.J. Shiflet: Acta Mater., 2004, vol. 52, pp. 3565–585.

    Article  CAS  Google Scholar 

  33. H. Guo and M. Enomoto: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1152–161.

    Article  CAS  Google Scholar 

  34. H. Fang, S. van der Zwaag, and N.H. Dijk: Acta Mater., 2021, vol. 212, 116897.

    Article  CAS  Google Scholar 

  35. V. Shah, M. Krugla, S.E. Offerman, J. Siestma, and D.N. Hanlon: ISIJ Int., 2020, vol. 60, pp. 1312–323.

    Article  CAS  Google Scholar 

  36. G.H. Zhang, R. Wei, M. Enomoto, and D.W. Suh: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 833–42.

    Article  Google Scholar 

  37. C.H.P. Lupis: Chemical Thermodynamics of Materials, Elsevier Science Publishing Co., Inc, New York, 1983, pp. 169–262.

    Google Scholar 

  38. J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad, 2002, vol. 26, pp. 273–312.

    Article  CAS  Google Scholar 

  39. C. Wagner: Thermodynamics of Alloys, Addison-wesley, 1951.

  40. L. Darken: Trans. AIME, 1967, vol. 239, pp. 80–9.

    CAS  Google Scholar 

  41. L. Darken: Trans. AIME, 1967, vol. 239, pp. 90–6.

    CAS  Google Scholar 

  42. C.W. Bale and A.D. Pelton: Metall. Trans. A, 1990, vol. 21A, pp. 1997–2002.

    Article  CAS  Google Scholar 

  43. A.D. Pelton and C.W. Bale: Metall. Trans. A, 1986, vol. 17A, pp. 1211–215.

    Article  CAS  Google Scholar 

  44. S. Srikanth and K.T. Jacob: Metall. Trans. B, 1988, vol. 19B, pp. 269–75.

    Article  CAS  Google Scholar 

  45. Y.B. Kang: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 795–804.

    Article  Google Scholar 

  46. C.H.P. Lupis: Acta Metall., 1966, vol. 14, pp. 529–38.

    Article  CAS  Google Scholar 

  47. C.H.P. Lupis and J.F. Elliott: Acta Metall., 1967, vol. 152, pp. 65–276.

    Google Scholar 

  48. R. David: Gaskell: Introduction to the Thermodynamics of Materials, 4th ed. Taylor & Francis, New York, 2003, pp. 473–78.

    Google Scholar 

  49. M. Hillert: Acta Metall., 1971, vol. 19, pp. 769–78.

    Article  CAS  Google Scholar 

  50. M. Hillert: Institute of Metals, London. Monograph No., 1968, vol. 33, pp. 231–47.

    Google Scholar 

  51. Matlab Documentation, https://www.mathworks.com/help/matlab/ref/inv.html.

  52. Octave Docs, https://octave.org/doc/v6.4.0/Solvers.html.

  53. Matlab Documentation, https://www.mathworks.com/help/optim/ug/fsolve.html.

  54. S.H. Lee, K.S. Lee, and K.J. Lee: Mater. Sci. Forum., 2005, vol. 475–479, pp. 3327–330.

    Article  Google Scholar 

  55. A.T. Dinsdale: Calphad, 1991, vol. 15, pp. 317–425.

    Article  CAS  Google Scholar 

  56. T. Furuhara, T. Chiba, T. Kaneshita, H. Wu nad G. Miyamoto: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 2739–52.

  57. M.M. Aranda, R. Rementeria, C. Capdevila, and R.E. Hackenberg: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 649–60.

    Article  Google Scholar 

  58. Q. Guo, H. Yen, H. Luo, and S.P. Ringer: Acta Mater., 2022, vol. 225, 117601.

    Article  CAS  Google Scholar 

  59. K. Hashiguchi and J.S. Kirkaldy: Scand. J. Metall., 1984, vol. 13, pp. 240–48.

    CAS  Google Scholar 

  60. J. Yan, J. Agren, and J. Jeppsson: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 1978–2001.

    Article  Google Scholar 

  61. H. Ishigami, N. Nakada, T. Kochi, and S. Nanba: ISIJ Int., 2019, vol. 59, pp. 1667–675.

    Article  CAS  Google Scholar 

  62. T. Tanaka, H.I. Aaronson, and M. Enomoto: Metall. Trans. A, 1995, vol. 26A, pp. 535–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to The Director, CSIR-NML for his permission to carry out this research work under project MLP—3123 and publish it. One of the authors, V.K. Sahu would also like to express sincere gratitude to CSIR HRDG for the financial support (in the form of fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehashish Tripathy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1699 kb)

Appendices

Appendix A. Darken’s Quadratic Formalism

The expression for the logarithm of activity coefficients extended to ternary system by Darken using Quadratic formalism has been given by Equations [A1] through [A3] where \({N}_{2}\), \({N}_{3}\) refer to atom fractions of solutes 2 and 3, while \({\alpha }_{12}\), \({\mathrm{\alpha }}_{13}\), \({\mathrm{\alpha }}_{23}\) are the coefficients of the Quadratic formalism.

$$\mathrm{log}{\upgamma }_{1}={\mathrm{\alpha }}_{12}{\mathrm{N}}_{2}^{2}+{\mathrm{\alpha }}_{13}{\mathrm{N}}_{3}^{2}+\left({\mathrm{\alpha }}_{12}+{\mathrm{\alpha }}_{13}-{\mathrm{\alpha }}_{23}\right){\mathrm{N}}_{2}{\mathrm{N}}_{3}$$
(A1)
$$\mathrm{log}\left(\frac{{\gamma }_{2}}{{\gamma }_{2}^{0}}\right)=-2{\alpha }_{12}{N}_{2}+\left({\alpha }_{23}-{\alpha }_{12}-{\alpha }_{13}\right){N}_{3}+{\alpha }_{12}{N}_{2}^{2}+{\alpha }_{13}{N}_{3}^{2}+\left({\alpha }_{12}+{\alpha }_{13}-{\alpha }_{23}\right){N}_{2}{N}_{3}$$
(A2)
$$\mathrm{log}\left(\frac{{\gamma }_{3}}{{\gamma }_{3}^{0}}\right)=-2{\alpha }_{13}{N}_{3}+\left({\alpha }_{23}-{\alpha }_{12}-{\alpha }_{13}\right){N}_{2}+{\alpha }_{12}{N}_{2}^{2}+{\alpha }_{13}{N}_{3}^{2}+\left({\alpha }_{12}+{\alpha }_{13}-{\alpha }_{23}\right){N}_{2}{N}_{3}$$
(A3)

Appendix B. Comparison of Model by Lupis and Elliot

Lupis and Elliot expressed the logarithm of activity coefficient of solute and solvent in the form of Taylor series expansion about the point of infinite dilution. The expression in the form of Taylor series expansion sets forth the assumption that all the derivatives of \(ln\gamma\) are finite resulting in an implied assumption that the solute follows Henry’s Law. The Taylor series expansion for \(ln{\gamma }_{1}\), \(ln{\gamma }_{2}\) and \(ln{\gamma }_{3}\) have been given by the Equations [B1] through [B3]. The superscript and subscript of the coefficient ‘\({J}_{i,j}^{k}\)’ represents the solute under consideration (i.e. k) and the order of differential of its logarithm of activity coefficient with respect to solutes (i and j) respectively.

$$ln{\gamma }_{1}={J}_{\mathrm{1,0}}^{(1)}{x}_{2}+{J}_{\mathrm{0,1}}^{(1)}{x}_{3}+{J}_{\mathrm{2,0}}^{(1)}{x}_{2}^{2}+{J}_{\mathrm{1,1}}^{(1)}{x}_{2}{x}_{3}+{J}_{\mathrm{0,2}}^{(1)}{x}_{3}^{2}+ \cdots $$
(B1)
$$ln{\gamma }_{2}={J}_{\mathrm{0,0}}^{(2)}+{J}_{\mathrm{1,0}}^{(2)}{x}_{2}+{J}_{\mathrm{0,1}}^{(2)}{x}_{3}+{J}_{\mathrm{2,0}}^{(2)}{x}_{2}^{2}+{J}_{\mathrm{1,1}}^{(2)}{x}_{2}{x}_{3}+{J}_{\mathrm{0,2}}^{(2)}{x}_{3}^{2}+ \cdots $$
(B2)
$$ln{\gamma }_{3}={J}_{\mathrm{0,0}}^{(3)}+{J}_{\mathrm{1,0}}^{(3)}{x}_{2}+{J}_{\mathrm{0,1}}^{(3)}{x}_{3}+{J}_{\mathrm{2,0}}^{(3)}{x}_{2}^{2}+{J}_{\mathrm{1,1}}^{(3)}{x}_{2}{x}_{3}+{J}_{\mathrm{0,2}}^{(3)}{x}_{3}^{2}+ \cdots $$
(B3)

The \({J}_{\mathrm{1,0}}^{(1)}\), \({J}_{\mathrm{1,0}}^{(2)}\) and \({J}_{\mathrm{1,0}}^{(3)}\) terms represent first order differential of logarithm of solvent (1), solute (2) and (3) with respect to solute (2) respectively as given in Equations [B4] through [B6]. Similarly \({J}_{\mathrm{0,1}}^{(1)}\), \({J}_{\mathrm{0,1}}^{(2)}\) and \({J}_{\mathrm{0,1}}^{(3)}\) represent first order differential of logarithm of solvent (1), solute (2) and (3) with respect to solute (3) respectively as given in Equations [B7] through [B9].

$$J_{1,0}^{\left( 1 \right)} = \left( {\frac{{\partial \ln \gamma_{1} }}{{\partial x_{2} }}} \right)_{{x_{1} \to 1}}$$
(B4)
$$J_{1,0}^{\left( 2 \right)} = \left( {\frac{{\partial \ln \gamma_{2} }}{{\partial x_{2} }}} \right)_{{x_{1} \to 1}} = \varepsilon_{2}^{2}$$
(B5)
$$J_{1,0}^{\left( 3 \right)} = \left( {\frac{{\partial \ln \gamma_{3} }}{{\partial x_{2} }}} \right)_{{x_{1} \to 1}} = \varepsilon_{3}^{2}$$
(B6)
$$J_{0,1}^{\left( 1 \right)} x_{3} = \left( {\frac{{\partial \ln \gamma_{1} }}{{\partial x_{3} }}} \right)_{{x_{1} \to 1}}$$
(B7)
$$J_{0,1}^{\left( 2 \right)} = \left( {\frac{{\partial \ln \gamma_{2} }}{{\partial x_{3} }}} \right)_{{x_{1} \to 1}} = \varepsilon_{2}^{3}$$
(B8)
$$J_{0,1}^{\left( 3 \right)} = \left( {\frac{{\partial \ln \gamma_{3} }}{{\partial x_{3} }}} \right)_{{x_{1} \to 1}} = \varepsilon_{3}^{3}$$
(B9)

The \({J}_{\mathrm{2,0}}^{(1)}\), \({J}_{\mathrm{2,0}}^{(2)}\) and \({J}_{\mathrm{2,0}}^{(3)}\) terms represent the second order differential of logarithm of activity coefficient of solvent (1), solute (2) and (3) with respect to solute (2) respectively as given in Equations [B10] through [B12]. Similarly \({J}_{\mathrm{1,1}}^{(1)}\), \({J}_{\mathrm{1,1}}^{(2)}\) and \({J}_{\mathrm{1,1}}^{(3)}\) represent the second order differential of logarithm of activity coefficient of solvent (1), solute (2) and (3) with respect to solute (2) and (3) respectively, as given in Equations [B13] through [B15]. Furthermore \({J}_{\mathrm{0,2}}^{(1)}\), \({J}_{\mathrm{0,2}}^{(2)}\) and \({J}_{\mathrm{0,2}}^{(3)}\) represent the second order differential of logarithm of activity coefficient of solvent (1), solute (2) and (3) with respect to solute (3) respectively as given in Equations [B16] through [B18].

$$J_{2,0}^{\left( 1 \right)} = \left( {\frac{{\partial^{2} \ln \gamma_{1} }}{{\partial x_{2}^{2} }}} \right)_{{x_{1} \to 1}}$$
(B10)
$$J_{2,0}^{\left( 2 \right)} = \left( {\frac{{\partial^{2} \ln \gamma_{2} }}{{\partial x_{2}^{2} }}} \right)_{{x_{1} \to 1}} = \rho_{2}^{2}$$
(B11)
$$J_{2,0}^{\left( 3 \right)} = \left( {\frac{{\partial^{2} \ln \gamma_{3} }}{{\partial x_{2}^{2} }}} \right)_{{x_{1} \to 1}} = \rho_{3}^{2}$$
(B12)
$$J_{1,1}^{\left( 1 \right)} = \left( {\frac{{\partial^{2} \ln \gamma_{1} }}{{\partial x_{2} \partial x_{3} }}} \right)_{{x_{1} \to 1}}$$
(B13)
$$J_{1,1}^{\left( 2 \right)} = \left( {\frac{{\partial^{2} \ln \gamma_{2} }}{{\partial x_{2} \partial x_{3} }}} \right)_{{x_{1} \to 1}} = \rho_{2}^{2,3}$$
(B14)
$$J_{1,1}^{\left( 3 \right)} = \left( {\frac{{\partial^{2} \ln \gamma_{3} }}{{\partial x_{2} \partial x_{3} }}} \right)_{{x_{1} \to 1}} = \rho_{3}^{2,3}$$
(B15)
$$J_{0,2}^{\left( 1 \right)} = \left( {\frac{{\partial^{2} \ln \gamma_{1} }}{{\partial x_{3}^{2} }}} \right)_{{x_{1} \to 1}}$$
(B16)
$$J_{0,2}^{\left( 2 \right)} = \left( {\frac{{\partial^{2} \ln \gamma_{2} }}{{\partial x_{3}^{2} }}} \right)_{{x_{1} \to 1}} = \rho_{2}^{3}$$
(B17)
$$J_{0,2}^{\left( 3 \right)} = \left( {\frac{{\partial^{2} \ln \gamma_{3} }}{{\partial x_{3}^{2} }}} \right)_{{x_{1} \to 1}} = \rho_{3}^{3}$$
(B18)

The coefficient \({J}_{\mathrm{0,0}}^{(2)}\) and \({J}_{\mathrm{0,0}}^{(3)}\) in Equations [B2] and [B3] are the value of \(ln{\gamma }_{2}\) and \(ln{\gamma }_{3}\) at infinite dilution of all solutes, represented by \(ln{\gamma }_{2}^{0}\) and \(ln{\gamma }_{3}^{0}\) respectively (with respect to Raoultian standard state). Further, replacing the \({J}_{i,j}^{k}\) terms in Equations [B2] and [B3] with the interaction parameters (\({\varepsilon }_{2}^{2}\),\({\varepsilon }_{2}^{3}\),\({\varepsilon }_{3}^{2}\), \({\varepsilon }_{3}^{3}{\rho }_{2}^{2}\),\({\rho }_{2}^{\mathrm{2,3}}\),\({\rho }_{2}^{3}\),\({\rho }_{3}^{2}\), \({\rho }_{3}^{3}\) and \({\rho }_{3}^{\mathrm{2,3}}\)) lead to new set of Equations given by Equations [B19] and [B20].

$$ln{\gamma }_{2}={ln{\gamma }_{2}^{0}+\varepsilon }_{2}^{2}{x}_{2}+{\varepsilon }_{2}^{3}{x}_{3}+ {\rho }_{2}^{2}{x}_{2}^{2}+{\rho }_{2}^{\mathrm{2,3}}{x}_{2}{x}_{3}+{\rho }_{2}^{3}{x}_{3}^{2}+ \ldots \ldots \ldots \ldots .$$
(B19)
$$ln{\gamma }_{3}={ln{\gamma }_{3}^{0}+\varepsilon }_{3}^{3}{x}_{3}+{\varepsilon }_{3}^{2}{x}_{2}+{\rho }_{3}^{2}{x}_{2}^{2}+{\rho }_{3}^{\mathrm{2,3}}{x}_{2}{x}_{3}+{\rho }_{3}^{3}{x}_{3}^{2}+ \ldots \ldots \ldots \ldots \ldots$$
(B20)

Substituting the expression of \(ln{\gamma }_{1}\), \(ln{\gamma }_{2}\) and \(ln{\gamma }_{3}\) given in Equations [B19] and [B20] in the Gibbs Duhem relation given by Equations [B21] and [B22] yields Equations [B23] and [B24] which can further be simplified resulting in Equations [B25] and [B26]. The term \({J}_{\mathrm{0,0}}^{(1)}\) in the expansion of \(ln{\gamma }_{1}\) is equal to zero (\({\left(ln{\gamma }_{1}\right)}_{{x}_{1\to 1}}=0)\) as the Raoultian standard state has been considered for solvent.

$$\left(1-{x}_{2}-{x}_{3}\right)\frac{\partial {\overline{G} }_{1}^{ex}}{\partial {x}_{2}}+ {x}_{2}\frac{\partial {\overline{G} }_{2}^{ex}}{\partial {x}_{2}}+ {x}_{3}\frac{\partial {\overline{G} }_{3}^{ex}}{\partial {x}_{2}}=0$$
(B21)
$$\left(1-{x}_{2}-{x}_{3}\right)\frac{\partial {\overline{G} }_{1}^{ex}}{\partial {x}_{3}}+ {x}_{2}\frac{\partial {\overline{G} }_{2}^{ex}}{\partial {x}_{3}}+ {x}_{3}\frac{\partial {\overline{G} }_{3}^{ex}}{\partial {x}_{3}}=0$$
(B22)
$$\left(1-{x}_{2}-{x}_{3}\right)\left({J}_{\mathrm{1,0}}^{(1)}+{2J}_{\mathrm{2,0}}^{(1)}{x}_{2}+{J}_{\mathrm{1,1}}^{(1)}{x}_{3}+ \cdots \cdots .\right)+{x}_{2}\left({\varepsilon }_{2}^{2}+2{\rho }_{2}^{2}{x}_{2}+{\rho }_{2}^{\mathrm{2,3}}{x}_{3}+ \cdots \cdots .\right)+{x}_{3}\left({\varepsilon }_{3}^{2}+{2\rho }_{3}^{2}{x}_{2}+{\rho }_{3}^{\mathrm{2,3}}{x}_{3}+ \ldots \ldots.\right)=0$$
(B23)
$$\left(1-{x}_{2}-{x}_{3}\right)\left({J}_{\mathrm{0,1}}^{(1)}+{2J}_{\mathrm{0,2}}^{(1)}{x}_{3}+{J}_{\mathrm{1,1}}^{(1)}{x}_{2}+ \cdots \cdots .\right)+{x}_{2}\left({\varepsilon }_{2}^{3}+{\rho }_{2}^{\mathrm{2,3}}{x}_{2}+2{\rho }_{2}^{3}{x}_{3}+ \cdots \cdots .\right)+{x}_{3}\left({\varepsilon }_{3}^{3}+{\rho }_{3}^{\mathrm{2,3}}{x}_{2}+2{\rho }_{3}^{3}+{x}_{3}+ \ldots \ldots .\right)=0$$
(B24)
$$J_{1,0}^{\left( 1 \right)} + x_{2} \left( {2J_{2,0}^{\left( 1 \right)} - J_{1,0}^{\left( 1 \right)} + \varepsilon_{2}^{2} } \right) + x_{3} \left( {J_{1,1}^{\left( 1 \right)} - J_{1,0}^{\left( 1 \right)} + \varepsilon_{3}^{2} } \right) + \ldots \ldots . = 0$$
(B25)
$$J_{0,1}^{\left( 1 \right)} + x_{2} \left( {J_{1,1}^{\left( 1 \right)} - J_{1,0}^{\left( 1 \right)} + \varepsilon_{2}^{3} } \right) + x_{3} \left( {2J_{0,2}^{\left( 1 \right)} - J_{0,1}^{\left( 1 \right)} + \varepsilon_{3}^{3} } \right) + \ldots \ldots . = 0$$
(B26)

The Equations [B25] and [B26] are of the form

$$A+B{x}_{2}+C{x}_{3}+D{x}_{2}^{2}\cdots ..=0$$
(B27)

For any value of \({x}_{2}\) and \({x}_{3}\) the expression in B27 will yield a positive value. The only way for the expression in B27 to be zero is that the coefficients A, B, C, D etc. should all be individually zero.

The first order and the second order terms in the expansion of \(ln{\gamma }_{1}\) are obtained only by equating the coefficients A, B and C with zero which yields relations given by Equations [B28] through [B33]. Relation in Equation [B28] implies that the Raoults law is obeyed for the binary system 1– 2.

$$J_{1,0}^{\left( 1 \right)} = 0 = J_{0,1}^{\left( 1 \right)}$$
(B28)
$$J_{2,0}^{\left( 1 \right)} = - \frac{1}{2}\varepsilon_{2}^{2}$$
(B29)
$$J_{1,1}^{\left( 1 \right)} = - \varepsilon_{2}^{3}$$
(B30)
$$J_{1,1}^{\left( 1 \right)} = - \varepsilon_{3}^{2}$$
(B31)
$$\varepsilon_{3}^{2} = \varepsilon_{2}^{3}$$
(B32)
$$J_{0,2}^{\left( 1 \right)} = - \frac{1}{2}\varepsilon_{3}^{3}$$
(B33)

On substituting the values of \({J}_{\mathrm{0,0}}^{(1)}\), \({J}_{\mathrm{1,0}}^{(1)}\), \({J}_{\mathrm{2,0}}^{(1)}\), \({J}_{\mathrm{1,1}}^{(1)}\) and \({J}_{\mathrm{0,2}}^{(1)}\) in equation [B1] the expression for \(ln{\gamma }_{1}\) can be written as shown in Equation [B34].

$${\mathrm{ln}}{\gamma }_{1}=-\frac{1}{2}{{\varepsilon }_{2}^{2}x}_{2}^{2}-{\varepsilon }_{2}^{3}{x}_{2}{x}_{3}-\frac{1}{2}{{\varepsilon }_{3}^{3}x}_{3}^{2}+ \cdots ..$$
(B34)

Once the series expression for \({\mathrm{ln}}{\gamma }_{1}\) in terms of \({\varepsilon }_{i}^{j}\mathrm{s}\) is obtained, overall excess Gibbs energy of a phase in a ternary system can be evaluated by adopting the expression for integral molar excess Gibbs energy, \({G}_{\text{m}}^{xs}\) as shown in Equation [B35].

$$\frac{{G}_{\text{m}}^{xs}}{RT}=\left(1-{x}_{2}-{x}_{3}\right){\mathrm{ln}}{\gamma }_{1}+{x}_{2}{\mathrm{ln}}{\gamma }_{2}+ {x}_{3}{\mathrm{ln}}{\gamma }_{3}$$
(B35)

Substituting the expression of \(ln{\gamma }_{1}\), \(ln{\gamma }_{2}\) and \(ln{\gamma }_{3}\) in Eq. [B35] yields Eq. [B36].

$$\frac{{G}_{\text{m}}^{xs}}{RT}={x}_{2}ln{\gamma }_{2}^{0}+{x}_{3}ln{\gamma }_{3}^{0}+\frac{1}{2}{{\varepsilon }_{2}^{2}x}_{2}^{2}+\frac{1}{2}{{\varepsilon }_{3}^{3}x}_{3}^{2}+{\varepsilon }_{2}^{3}{x}_{2}{x}_{3}\cdots \cdots \cdots$$
(B36)

Equations [B37] through [B39] represent the relationship of partial molar excess Gibbs energy of each component with the integral molar excess Gibbs energy in a ternary system. Adopting Equations [B37] through [B39], expression for \(ln{\gamma }_{1}\), \(ln{\gamma }_{2}\) and \(ln{\gamma }_{3}\) can be evaluated using the second order truncated expansion of integral molar excess Gibbs energy as given by Equation [B36]. These expressions for \(ln{\gamma }_{1}\), \(ln{\gamma }_{2}\) and \(ln{\gamma }_{3}\) are given by Equations [B40] through [B42], which are similar to the ones given by Pelton and Bale for UIPF.

$$\overline{G}_{1}^{xs} = RT\ln \gamma_{1} = G_{\text{m}}^{xs} - x_{2} \frac{{\partial G^{xs} }}{{\partial x_{2} }} - x_{3} \frac{{\partial G^{xs} }}{{\partial x_{3} }}$$
(B37)
$$\overline{G}_{2}^{xs} = RT\ln \gamma_{2} = G_{\text{m}}^{xs} + (1 - x_{2)} \frac{{\partial G^{xs} }}{{\partial x_{2} }} - x_{3} \frac{{\partial G^{xs} }}{{\partial x_{3} }}$$
(B38)
$$\overline{G}_{3}^{xs} = RT\ln \gamma_{3} = G_{\text{m}}^{xs} - x_{2} \frac{{\partial G^{xs} }}{{\partial x_{2} }} + \left( {1 - x_{3} } \right)\frac{{\partial G^{xs} }}{{\partial x_{3} }}$$
(B39)
$$ln{\gamma }_{1}=-\frac{1}{2}{{\varepsilon }_{2}^{2}x}_{2}^{2}-{\varepsilon }_{2}^{3}{x}_{2}{x}_{3}-\frac{1}{2}{{\varepsilon }_{3}^{3}x}_{3}^{2}$$
(B40)
$${\mathrm{ln}}{\gamma }_{2}={ln{\gamma }_{2}^{0}+\varepsilon }_{2}^{2}{x}_{2}+{\varepsilon }_{2}^{3}{x}_{3}-\frac{1}{2}{{\varepsilon }_{2}^{2}x}_{2}^{2}-{\varepsilon }_{2}^{3}{x}_{2}{x}_{3}-\frac{1}{2}{{\varepsilon }_{3}^{3}x}_{3}^{2}$$
(B41)
$${\mathrm{ln}}{\gamma }_{3}={ln{\gamma }_{3}^{0}+\varepsilon }_{2}^{3}{x}_{2}+{\varepsilon }_{3}^{3}{x}_{3}-\frac{1}{2}{{\varepsilon }_{2}^{2}x}_{2}^{2}-{\varepsilon }_{2}^{3}{x}_{2}{x}_{3}-\frac{1}{2}{{\varepsilon }_{3}^{3}x}_{3}^{2}$$
(B42)

On comparing Equations [B39] and [B40] with Equations [B19] and [B20] respectively, yields the relations given in Equations [B43] through [B45].

$${\rho }_{2}^{2}=-\frac{1}{2}{\varepsilon }_{2}^{2}$$
(B43)
$${\rho }_{3}^{\mathrm{2,3}}=-{\varepsilon }_{2}^{3}={\rho }_{2}^{\mathrm{2,3}}$$
(B44)
$${\rho }_{3}^{3}=-\frac{1}{2}{\varepsilon }_{3}^{3}$$
(B45)

Appendix C. The Compositions Across the Selected Tie–Lines for Austenite-Cementite and Austenite-Ferrite Equilibria Considering PLE and NPLE Mode for Fe–0.8C–1.08Mn and Fe–0.69C–1.8Mn Systems Respectively

See Tables CI, CII, CIII.

Table CI Equilibrium Composition Across tie Lines for Fe–0.8C–1.08Mn Considering PLE
Table CII Equilibrium Composition Across tie Lines for Fe–0.69C–1.8Mn Considering PLE
Table CIII Equilibrium Composition for Fe–0.8C–1.08Mn Considering NPLE

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, V.K., Tripathy, S., Chowdhury, S.G. et al. On the Unified Interaction Parameter Formalism and Its Application in Critical Reassessment of Pearlitic Transformation in Fe–C–Mn System. Metall Mater Trans A 54, 3157–3185 (2023). https://doi.org/10.1007/s11661-023-07086-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07086-w

Navigation