Skip to main content
Log in

Quenching and Partitioning (Q&P) Steel: Alloy Design, Phase Transformation and Evolution of Microstructure

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Correction to this article was published on 22 June 2023

This article has been updated

Abstract

A low-carbon low-alloy steel suitable for Q&P processing was designed by considering the influence of alloying elements on various aspects of transformation and microstructure like the optimum quenching temperature (QTopt) that maximizes the amount of retained austenite at room temperature, the critical cooling rate for martensite transformation, thermal and mechanical stability of retained austenite and cementite precipitation from austenite. A number of semi-empirical equations and the thermodynamic software ThermoCalc were used for the purpose. The designed steel was prepared and pre-processed in the laboratory by melting, casting and hot forging. The samples from the as forged material were then subjected to quenching, austempering and quenching and partitioning treatments in a dilatometer and salt-bath furnace to understand the preliminary phase transformation behavior, microstructural evolution and mechanical properties. An alternative method, utilizing the experimental dilatation data obtained during quenching and conventional austempering processes, was used to quantify the multiphase Q&P microstructures which provided a reasonably accurate estimate of the actual amount of retained austenite at room temperature. The microstructure obtained after Q&P processing resulted in a better combination of strength and elongation than the martensitic and bainitic microstructures which was attributed to a more effective exploitation of the TRIP effect. The TRIP behavior has been found to depend not only on the amount of retained austenite and its carbon content but also on the morphology of austenite and the characteristics of the surrounding phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Change history

References

  1. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–22.

    Article  CAS  Google Scholar 

  2. D.K. Matlock, V.E. Brautigam, and J.G. Speer: Mater. Sci. Forum, 2003, vol. 426–432, pp. 1089–94.

    Article  Google Scholar 

  3. F. HajyAkbary, J. Sietsma, G. Miyamoto, N. Kamikawa, R.H. Petrov, T. Furuhara, and M.J. Santofimia: Mater. Sci. Eng. A, 2016, vol. 677, pp. 505–14.

    Article  CAS  Google Scholar 

  4. E. De Moor, S. Lacroix, A.J. Clarke, J. Penning, and J.G. Speer: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2586–95.

    Article  CAS  Google Scholar 

  5. D.K. Matlock and J.G. Speer: in Proc. of the 3rd International Conference on Advanced Structural Steels, Korean Institute of Metals and Materials, Seoul, South Korea, 2006, pp. 774–81.

  6. J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 219–37.

    Article  CAS  Google Scholar 

  7. D.T. Pierce, D.R. Coughlin, D.L. Williamson, J. Kähkönen, A.J. Clarke, K.D. Clarke, J.G. Speer, and E. De Moor: Scr. Mater., 2016, vol. 121, pp. 5–9.

    Article  CAS  Google Scholar 

  8. S. Yan, X. Liu, W.J. Liu, H. Lan, and H. Wu: Mater. Sci. Eng. A, 2015, vol. 620, pp. 58–66.

    Article  Google Scholar 

  9. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer: Mater. Sci. Eng. A, 2006, vol. 438–440, pp. 25–34.

    Article  Google Scholar 

  10. S. Samanta, P. Biswas, S. Giri, S.B. Singh, and S. Kundu: Acta Mater., 2016, vol. 105, pp. 390–403.

    Article  CAS  Google Scholar 

  11. S. Samanta, P. Biswas, and S.B. Singh: Scr. Mater., 2017, vol. 136, pp. 132–35.

    Article  CAS  Google Scholar 

  12. F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, and M.J. Santofimia: Acta Mater., 2016, vol. 104, pp. 72–83.

    Article  CAS  Google Scholar 

  13. R. Abbaschian, L. Abbaschian, and R.E. Reed-Hill: in Physical metallurgy principles, 4 th., Cengage Learning, Stamford, USA, 2009, pp. 603–50.

  14. H.K.D.H. Bhadeshia and R. Honeycombe: Steels: Microstructure and Properties, 4th ed. Butterworth-Heinemann, Oxford, 2017, pp. 217–36.

    Book  Google Scholar 

  15. K. Iijima: Trans. Jpn. Inst. Met., 1963, vol. 4, pp. 52–56.

    Article  CAS  Google Scholar 

  16. R.A. Grange: Metall. Trans., 1973, vol. 4, pp. 2231–44.

    Article  CAS  Google Scholar 

  17. T. Heller and A. Nuss: Ironmak. Steelmak., 2005, vol. 32, pp. 303–08.

    Article  CAS  Google Scholar 

  18. X. Gui, G. Gao, H. Guo, F. Zhao, Z. Tan, and B. Bai: Mater. Sci. Eng. A, 2017, vol. 684, pp. 598–605.

    Article  CAS  Google Scholar 

  19. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang: Scr. Mater., 2013, vol. 68, pp. 321–24.

    Article  CAS  Google Scholar 

  20. W.J. Dan, W.G. Zhang, S.H. Li, and Z.Q. Lin: Comput. Mater. Sci., 2007, vol. 40, pp. 101–07.

    Article  CAS  Google Scholar 

  21. V.F. Zackay, E.R. Parker, and D. Fahr: ASM Trans., 1967, vol. 60, pp. 252–59.

    CAS  Google Scholar 

  22. D.K. Matlock and J.G. Speer: in Microstructure and texture in steels and other materials, A. Halder, S. Suwas, and D. Bhattacharjee, eds., Springer, London, 2009, pp. 185–205.

  23. Z.J. Xie, Y.Q. Ren, W.H. Zhou, J.R. Yang, C.J. Shang, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 603, pp. 69–75.

    Article  CAS  Google Scholar 

  24. E. De Moor, J.G. Speer, D.K. Matlock, J.-H. Kwak, and S.-B. Lee: ISIJ Int., 2011, vol. 51, pp. 137–44.

    Article  Google Scholar 

  25. S. Samanta, S. Das, D. Chakrabarti, I. Samajdar, S.B. Singh, and A. Haldar: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5653–64.

    Article  Google Scholar 

  26. S. Kumar: Mater. Sci. Technol., 2022, vol. 38, pp. 663–75.

    Article  CAS  Google Scholar 

  27. Y. Toji, G. Miyamoto, and D. Raabe: Acta Mater., 2015, vol. 86, pp. 137–47.

    Article  CAS  Google Scholar 

  28. S.M.C. Van Bohemen and J. Sietsma: Mater. Sci. Technol., 2009, vol. 25, pp. 1009–12.

    Article  Google Scholar 

  29. P. Maynier, J.D. Manager, and P. Bastien: in Hardenability Concepts with Applications to Steel, D.V. Doane and J.S. Kirkaldy, eds., TMS-AIME, Warrendale, PA, 1977, pp. 163–78.

  30. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721–27.

    CAS  Google Scholar 

  31. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59–60.

    Article  Google Scholar 

  32. K. Sugimoto, M. Kobayashi, and S. Hashimoto: Metall. Trans. A, 1992, vol. 23A, pp. 3085–91.

    Article  CAS  Google Scholar 

  33. M.Y. Sherif, C.G. Mateo, T. Sourmail, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2004, vol. 20, pp. 319–22.

    Article  CAS  Google Scholar 

  34. S. Kumar and S.B. Singh: Materialia, 2021, vol. 18, 101135.

    Article  CAS  Google Scholar 

  35. S. Kumar and S.B. Singh: Mater. Charact., 2023, vol. 196, 112561.

    Article  CAS  Google Scholar 

  36. D.T. Pierce, D.R. Coughlin, K.D. Clarke, E. De Moor, J. Poplawsky, D.L. Williamson, B. Mazumder, J.G. Speer, A. Hood, and A.J. Clarke: Acta Mater., 2018, vol. 151, pp. 454–69.

    Article  CAS  Google Scholar 

  37. E.J. Seo, L. Cho, and B.C. De Cooman: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 27–31.

    Article  Google Scholar 

  38. H.K.D.H. Bhadeshia and D.V. Edmonds: Met. Sci., 1983, vol. 17, pp. 411–19.

    Article  CAS  Google Scholar 

  39. E. De Moor, J.G. Speer, D.K. Matlock, C. Föjer, and J. Penning: Proc. Mater. Sci. Technol., 2009, pp. 1554–63.

  40. J. Kähkönen, D.T. Pierce, J.G. Speer, E. De Moor, G.A. Thomas, D. Coughlin, K. Clarke, and A. Clarke: J. Mater., 2016, vol. 68, pp. 210–15.

    Google Scholar 

  41. T. Gladman: The Physical Metallurgy of Microalloyed Steels, Institute of Materials, London, 1997.

    Google Scholar 

  42. A.M. Streicher, J.G. Speer, D.K. Matlock, and B.C. De Cooman: in Proceedings of the International Conference on Advanced High-Strength Sheet Steels for Automotive Applications, J.G. Speer, ed., AIST, Warrendale, PA, 2004, pp. 51–62.

  43. G.A. Thomas, E. De Moor, and J.G. Speer: in Proceedings of the international symposium on new developments in advanced high-strength sheet steels, E. De Moor, H.J. Jun, J.G. Speer, and M. Merwin, eds., AIST, Warrendale, PA, 2013, pp. 153–65.

  44. D.T. Pierce, D.R. Coughlin, D.L. Williamson, K.D. Clarke, A.J. Clarke, J.G. Speer, and E. De Moor: Acta Mater., 2015, vol. 90, pp. 417–30.

    Article  CAS  Google Scholar 

  45. M.F. Gallagher, J.G. Speer, D.K. Matlock, and N.M. Fonstien: in Proceedings of the 44th Mechanical Working and Steel Processing Conference, Iron and Steel Society, Warrendale, PA, 2002, pp. 153–72.

  46. J. Mahieu, S. Claessens, and B.C. De Cooman: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2905–08.

    Article  CAS  Google Scholar 

  47. A. Grajcar, R. Kuziak, and W. Zalecki: Arch. Civil Mech. Eng., 2012, vol. 12, pp. 334–41.

    Article  Google Scholar 

  48. K. Kim and S.J. Lee: Mater. Sci. Eng. A, 2017, vol. 698, pp. 183–90.

    Article  CAS  Google Scholar 

  49. E.J. Seo, L. Cho, and B.C. De Cooman: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4022–37.

    Article  Google Scholar 

  50. A.M. Llopis: University of California, Berkeley, 1977.

  51. V.S. Dwivedi, B.K. Jha, R. Avtar, and G. Thomas: Key Eng. Mater., 1993, vol. 84–85, pp. 406–36.

    Article  Google Scholar 

  52. J.G. Speer, D.K. Matlock, A.M. Streicher, F. Rizzo, and G. Krauss: in Austenite formation and decomposition, E.B. Damm and M.J. Merwin, eds., TMS/ISS, Warrendale, PA, 2003, pp. 505–22.

  53. S.M.C. Van Bohemen: Mater. Sci. Technol., 2012, vol. 28, pp. 487–95.

    Article  Google Scholar 

  54. F. Gerdemann: Microstructure and Hardness of 9260 Steel Heat Treated by the Quenching and Partitioning Process, Aachen University of Technology (RWTH), Dipl. Thesis, 2004.

  55. E.J. Seo, L. Cho, and B.C. DeCooman: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3797–3802.

    Article  Google Scholar 

  56. A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, and E. De Moor: Acta Mater., 2008, vol. 56, pp. 16–22.

    Article  CAS  Google Scholar 

  57. L. Cho, E.J. Seo, and B.C. De Cooman: Scr. Mater., 2016, vol. 123, pp. 69–72.

    Article  CAS  Google Scholar 

  58. M. Hillert and J. Årgen: Scr. Mater., 2005, vol. 52, pp. 87–88.

    Article  CAS  Google Scholar 

  59. J. Wang and S. Van der Zwaag: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1527–39.

    Article  CAS  Google Scholar 

  60. O. Kriesement and F. Wever: in Mechanism of Phase Transformations in Metals, Monograph and Rep. Ser. No. 18, Institute of Metals, London, U.K., 1956, pp. 253–63.

  61. H.K.D.H. Bhadeshia: Bainite in Steels: Theory and Practice, 3rd ed. Maney Publishing, Leeds, 2015.

    Google Scholar 

  62. J.G. Speer, F.C. Rizzo Assunção, D.K. Matlock, and D.V. Edmonds: Mater. Res., 2005, vol. 8, pp. 417–23.

    Article  CAS  Google Scholar 

  63. Y. Toji, H. Matsuda, M. Herbig, P.P. Choi, and D. Raabe: Acta Mater., 2014, vol. 65, pp. 215–28.

    Article  CAS  Google Scholar 

  64. S.M. Hasan: Indian Institute of Technology Kharagpur, India, 2019.

  65. H.K.D.H. Bhadeshia: Acta Metall., 1980, vol. 28, pp. 1103–14.

    Article  CAS  Google Scholar 

  66. S.J. Matas and R.F. Hehemann: TMS-AIME, 1961, vol. 221, pp. 179–85.

    CAS  Google Scholar 

  67. E. De Moor and J.G. Speer: in Automotive steels Design, Metallurgy, Processing and Applications, R. Rana and S.B. Singh, eds., 2017, pp. 289–316.

  68. W. Steven and A.G. Haynes: J. Iron Steel Inst., 1956, vol. 183, pp. 349–59.

    CAS  Google Scholar 

  69. M. Peet and H.K.D.H. Bhadeshia: MUCG83, Phase Transform. complex Prop. group, Dep. Mater. Sci. Metall. Univ. Cambridge, Cambridge, U.K.

  70. C. García de Andrés, F.G. Caballero, and C. Capdevila: Mater. Charact., 2003, vol. 49, pp. 121–27.

    Article  Google Scholar 

  71. D. Chakrabarti, C. Davis, and M. Strangwood: Mater. Charact., 2007, vol. 58, pp. 423–38.

    Article  CAS  Google Scholar 

  72. R.A. Young: Oxford Univ. Press. London, 2002, pp. 1–111.

  73. D.J. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 467–74.

    Google Scholar 

  74. H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, and R.W. Reed: Mater. Sci. Technol., 1991, vol. 7, pp. 686–98.

    Article  CAS  Google Scholar 

  75. I. Stark, G.D.W. Smith, and H.K.D.H. Bhadeshia: Metall. Trans. A, 1990, vol. 21A, pp. 837–44.

    Article  CAS  Google Scholar 

  76. E.V. Pereloma, I.B. Timokhina, M.K. Miller, and P.D. Hodgson: Acta Mater., 2007, vol. 55, pp. 2587–98.

    Article  CAS  Google Scholar 

  77. K. Venkateswarlu, M. Sandhyarani, T.A. Nellaippan, and N. Rameshbabu: Procedia Mater. Sci., 2014, vol. 5, pp. 212–21.

    Article  CAS  Google Scholar 

  78. G.K. Williamson and R.E. Smallman: Philos. Mag., 1956, vol. 1, pp. 34–46.

    Article  CAS  Google Scholar 

  79. L. Cheng, C.M. Brakman, B.M. Korevaar, and E.J. Mittemeijer: Metall. Trans. A, 1988, vol. 19A, pp. 2415–26.

    Article  CAS  Google Scholar 

  80. S. Kumar, S. Samanta, and S.B. Singh: Mater. Charact., 2022, vol. 191, 112049.

    Article  CAS  Google Scholar 

  81. H.I. Aaronson, W.T. Reynolds, G.J. Shiflet, and G. Spanos: Metall. Trans. A, 1990, vol. 21A, pp. 1343–80.

    Article  CAS  Google Scholar 

  82. G. Krauss: Mater. Sci. Eng. A, 1999, vol. 273–275, pp. 40–57.

    Article  Google Scholar 

  83. A.J. Clarke, M.K. Miller, R.D. Field, D.R. Coughlin, P.J. Gibbs, K.D. Clarke, D.J. Alexander, K.A. Powers, P.A. Papin, and G. Krauss: Acta Mater., 2014, vol. 77, pp. 17–27.

    Article  CAS  Google Scholar 

  84. G. Krauss: D.V. Doane and J.S. Kirkaldy, eds., AIME, Warrendale, PA, 1978, pp. 229–48.

  85. J. Hidalgo and M.J. Santofimia: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5288–5301.

    Article  Google Scholar 

  86. S.M.C. Van Bohemen and J. Sietsma: Mater. Sci. Technol., 2014, vol. 30, pp. 1024–33.

    Article  Google Scholar 

  87. S.J. Lee and K.S. Park: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3423–27.

    Article  Google Scholar 

  88. H.S. Yang and H.K.D.H. Bhadeshia: Scr. Mater., 2009, vol. 60, pp. 493–95.

    Article  CAS  Google Scholar 

  89. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag: Scr. Mater., 2007, vol. 56, pp. 421–24.

    Article  CAS  Google Scholar 

  90. S.J. Lee and C.J. Van Tyne: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 422–27.

    Article  Google Scholar 

  91. R. Ranjan and S.B. Singh: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 4474–83.

    Article  Google Scholar 

  92. A. Navarro-López, J. Sietsma, and M.J. Santofimia: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1028–39.

    Article  Google Scholar 

  93. Y. Toji, H. Matsuda, and D. Raabe: Acta Mater., 2016, vol. 116, pp. 250–62.

    Article  CAS  Google Scholar 

  94. S.M. Hasan, S. Kumar, D. Chakrabarti, and S.B. Singh: Philos. Magn., 2020, vol. 100, pp. 797–821.

    Article  CAS  Google Scholar 

  95. M.J. Santofimia, T. Nguyen-Minh, L. Zhao, R. Petrov, I. Sabirov, and J. Sietsma: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6429–39.

    Article  Google Scholar 

  96. H.K.D.H. Bhadeshia and D.V. Edmonds: Acta Metall., 1980, vol. 28, pp. 1265–73.

    Article  CAS  Google Scholar 

  97. S.M.C. Van Bohemen and D.N. Hanlon: Int. J. Mater. Res., 2012, vol. 103, pp. 987–91.

    Article  Google Scholar 

  98. B.D. Cullity: Elements of X-ray Diffraction, Addison-Wesley Publishing Co Inc, Massachusetts, 1978.

    Google Scholar 

  99. S.B. Singh and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 1998, vol. 245, pp. 72–79.

    Article  Google Scholar 

  100. G.A. Thomas, F. Danoix, J.G. Speer, S.W. Thompson, and F. Cuvilly: ISIJ Int., 2014, vol. 54, pp. 2900–06.

    Article  CAS  Google Scholar 

  101. H.Y. Li, X.W. Lu, W.J. Li, and X.J. Jin: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1284–1300.

    Article  CAS  Google Scholar 

  102. S. Hashimoto, S. Ikeda, K. Sugimoto, and S. Miyake: ISIJ Int., 2004, vol. 44, pp. 1590–98.

    Article  CAS  Google Scholar 

  103. S. Kang, J.G. Speer, D. Krizan, D.K. Matlock, and E. De Moor: Mater. Des., 2016, vol. 97, pp. 138–46.

    Article  CAS  Google Scholar 

  104. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag: Acta Mater., 2007, vol. 55, pp. 6713–23.

    Article  CAS  Google Scholar 

  105. G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan, and B. Bai: Acta Mater., 2014, vol. 76, pp. 425–33.

    Article  CAS  Google Scholar 

  106. P.J. Jacques, J. Ladrière, and F. Delannay: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2759–68.

    Article  CAS  Google Scholar 

  107. O. Muránsky, P. Šittner, J. Zrník, and E.C. Oliver: Acta Mater., 2008, vol. 56, pp. 3367–79.

    Article  Google Scholar 

  108. B. Fu, W.Y. Yang, Y.D. Wang, L.F. Li, Z.Q. Sun, and Y. Ren: Acta Mater., 2014, vol. 76, pp. 342–54.

    Article  CAS  Google Scholar 

  109. F.B. Pickering: Physical Metallurgy and Design of Steels, Applied Science Publishers, Essex, 1978.

    Google Scholar 

  110. S.B. Singh, H.K.D.H. Bhadeshia, D.J.C. Mackay, H. Carey, and I. Martin: Ironmak. Steelmak., 1998, vol. 25, pp. 355–65.

    CAS  Google Scholar 

  111. E.J. Seo, L. Cho, Y. Estrin, and B.C. De Cooman: Acta Mater., 2016, vol. 113, pp. 124–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Indian Institute of Technology Kharagpur for financial support. The authors are thankful to the Head of the Department of Metallurgical and Materials Engineering, IIT Kharagpur, for providing various research facilities.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Equation 7 was corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Singh, S.B. Quenching and Partitioning (Q&P) Steel: Alloy Design, Phase Transformation and Evolution of Microstructure. Metall Mater Trans A 54, 3134–3156 (2023). https://doi.org/10.1007/s11661-023-07085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07085-x

Navigation