Skip to main content
Log in

Investigation on Corrosion Behavior of Simulated Welding HAZ for 22 pct Cr Lean Duplex Stainless Steel With Different Mn/N Ratio Addition

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To improve the corrosion resistance of the welding heat-affected zone (HAZ) of 22 pct Cr lean duplex stainless steel (DSS), the matching of Mn, N compositions, and welding heat inputs were investigated with different Mn/N ratio addition. The average pitting potential of HAZ increased first and then decreased rapidly with increasing Mn/N ratio from 3.28 to 51.14 for different heat inputs, with the maximum value of 17.80 Mn/N ratio, which approaches 2205 DSS at higher heat input due to more reformed austenite formation. The large difference in nitrogen content distribution between the two phases for low and high Mn/N ratio DSS resulted in a much lower pitting resistance equivalent number value of the ferrite phase compared to the austenitic phase, weakening the enhanced effect of nitrogen on pitting corrosion resistance of DSS in HAZ. Meanwhile, corrosion pits occurred in δ-ferrite and were accelerated by the rise in Cr2N number and the enhancement of interphase dislocation at low heat input for a 17.80 Mn/N ratio. With the increase of the Mn/N ratio to 51.14, the stability and compactness of the passive film were considerably impaired by lower oxidized Fe(III) and Cr and NH4+ contents and more porous MnO production. The susceptibility to intergranular corrosion (IGC) of HAZ is comparable to 2205 DSS with a Mn/N ratio of 3.28 to 17.80 under various heat inputs, but which increased at a higher Mn/N ratio of 51.14 due to rapid increase of δ-ferrite fraction and fast growth of Widmanstatten austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data are also part of an ongoing study. The data will be made available upon request by contact with the corresponding author.

References

  1. J. Wan, Q. Ran, J. Li, Y. Xu, and L. Jiang: Mater. Des., 2014, vol. 53, pp. 43–50.

    Article  CAS  Google Scholar 

  2. C. Gennari, L. Pezzato, E. Simonetto, R. Gobbo, M. Forzan, and I. Calliari: Materials, 2019, vol. 12(12), p. 1911.

    Article  CAS  Google Scholar 

  3. I.M. Speelmanns, M.W. Schmidt, and C. Liebske: Geophys. Res. Lett., 2018, vol. 45, pp. 7434–43.

    Article  CAS  Google Scholar 

  4. Y. Yang, H. Qian, and Y. Su: Mater. Charact., 2018, vol. 145, pp. 606–18.

    Article  CAS  Google Scholar 

  5. D.N. Zou, K. Wu, Y. Han, W. Zhang, B. Chen, and G.J. Qiao: Mater. Des., 2013, vol. 51, pp. 975–82.

    Article  CAS  Google Scholar 

  6. H. Xu, W. Hu, C. Kang, W. Li, and X. Sha: Steel. Res. Int., 2021, vol. 92(1), p. 2000264.

    Article  CAS  Google Scholar 

  7. M. Jin, W. Li, S. Hao, R. Mei, N. Li, and L. Chen: Acta Metall. Sin., 2019, vol. 55(4), pp. 436–44.

    CAS  Google Scholar 

  8. A. Rokanopoulou, P. Skarvelis, and G.D. Papadimitriou: Weld. World, 2019, vol. 63, pp. 3–10.

    Article  CAS  Google Scholar 

  9. H.Y. Ha, M.H. Jang, T.H. Lee, and J. Moon: Corros. Sci., 2014, vol. 89, pp. 154–62.

    Article  CAS  Google Scholar 

  10. S.H. Arabi, M. Pouranvari, and M. Movahedi: Sci. Technol. Weld. J., 2019, vol. 24(1), pp. 8–15.

    Article  CAS  Google Scholar 

  11. E.J. da Cruz Junior, J. Gallego, A.G. Settimi, C. Gennari, A. Zambon, and V.A. Ventrella: J. Mater. Eng. Perform., 2021, vol. 30, pp. 3024–32.

    Article  Google Scholar 

  12. S. Tavares, C. Scandian, J.M. Pardal, T.S. Luz, and F.J. da Silva: Eng. Fail. Anal., 2010, vol. 17(6), pp. 1500–6.

    Article  CAS  Google Scholar 

  13. E.J. da Cruz Junior, B.B. Seloto, V.A. Ventrella, A.G. Settimi, C. Gennari, I. Calliari, and A. Zambon: Metall. Mater. Trans. A, 2022, vol. 53, pp. 25–8.

    Article  Google Scholar 

  14. G. Rondelli, B. Vicentini, and A. Cigada: Mater. Corros., 1995, vol. 46(11), pp. 628–32.

    Article  CAS  Google Scholar 

  15. J. Li, Y. Xu, X. Xiao, J. Zhao, L. Jiang, and J. Hu: Mater. Sci. Eng. A., 2009, vol. 527(1–2), pp. 245–51.

    Article  Google Scholar 

  16. Y. Yang and H. Qian: Metall. Mater. Trans. A, 2018, vol. 49(8), pp. 3184–97.

    Article  CAS  Google Scholar 

  17. V. Shokri, A. Sadeghi, and M.H. Sadeghi: Mater. Sci. Eng. A, 2017, vol. 693, pp. 111–20.

    Article  CAS  Google Scholar 

  18. H. Sieurin and R. Sandström: Mater. Sci. Eng. A, 2006, vol. 418(1–2), pp. 250–56.

    Article  Google Scholar 

  19. J. Luo, Y. Yuan, X. Wang, and Z. Yao: J. Mater. Eng. Perform., 2013, vol. 22(9), pp. 2477–86.

    Article  CAS  Google Scholar 

  20. S. Geng, J. Sun, L. Guo, and H. Wang: J. Manuf. Syst., 2015, vol. 19, pp. 32–7.

    Google Scholar 

  21. L. Chen, H. Tan, Z. Wang, J. Li, and Y. Jiang: Corros. Sci., 2012, vol. 58, pp. 168–74.

    Article  CAS  Google Scholar 

  22. S.T. Kim, I.S. Lee, J.S. Kim, S.H. Jang, Y.S. Park, K.T. Kim, and Y.S. Kim: Corros. Sci., 2012, vol. 64, pp. 164–73.

    Article  CAS  Google Scholar 

  23. T. Chehuan, V. Dreilich, K. Assis, F.V. de Sousa, and O.R. Mattos: Corros. Sci., 2014, vol. 86(86), pp. 268–74.

    Article  CAS  Google Scholar 

  24. Z. Zhang, Z. Wang, Y. Jiang, H. Tan, D. Han, Y. Guo, and J. Li: Corros. Sci., 2012, vol. 62, pp. 42–50.

    Article  CAS  Google Scholar 

  25. H.Y. Ha, T.H. Lee, C.S. Oh, and S.J. Kim: Scr. Mater., 2009, vol. 61(2), pp. 121–24.

    Article  CAS  Google Scholar 

  26. H.Y. Ha, T.H. Lee, and S.J. Kim: Electrochim. Acta., 2012, vol. 80, pp. 432–39.

    Article  CAS  Google Scholar 

  27. M. Metikoš-Huković, R. Babić, Z. Grubač, Ž Petrović, and N. Lajçi: Corros. Sci., 2011, vol. 53(6), pp. 2176–83.

    Article  Google Scholar 

  28. M.B. Leban and R. Tisu: Eng. Fail. Anal., 2013, vol. 33, pp. 430–38.

    Article  CAS  Google Scholar 

  29. H. Feng, Z. Jiang, H. Li, P. Lu, S. Zhang, H. Zhu, B. Zhang, T. Zhang, D. Xu, and Z. Chen: Corros. Sci., 2018, vol. 144, pp. 288–300.

    Article  CAS  Google Scholar 

  30. H. Hänninen, J. Romu, R. Ilola, J. Tervo, and A. Laitinen: J. Mater. Process. Technol., 2001, vol. 117(3), pp. 424–30.

    Article  Google Scholar 

  31. R.I. Hsieh, H.Y. Liou, and Y.T. Pan: J. Mater. Process. Technol., 2001, vol. 10(5), pp. 526–36.

    CAS  Google Scholar 

  32. ASTM E562. standard practice for Determining Volume Fraction by Systematic Manual Point Count.

  33. M.A. Valiente Bermejo, L. Karlsso, L.E. Svensson, K. Hurtig, H. Rasmuson, M. Frodigh, and P. Bengtsson: Weld. World, 2015, vol. 59, pp. 239–49.

    Article  CAS  Google Scholar 

  34. I. Moreno, J.F. Almagro, and X. Llovet: Microchim. Acta, 2002, vol. 139(1), pp. 105–10.

    Article  CAS  Google Scholar 

  35. ASTM E1508‐12a. Standard guide for quantitative analysis by energy-dispersive spectroscopy.

  36. Y. Fu, X. Wu, E.H. Han, W. Ke, K. Yang, and Z. Jiang: Electrochim. Acta, 2009, vol. 54(16), pp. 4005–14.

    Article  CAS  Google Scholar 

  37. L. Weber and P.J. Uggowitzer: Mater. Sci. Eng. A, 1998, vol. 242(1–2), pp. 222–29.

    Article  Google Scholar 

  38. J. Wan, Y. Lou, and H. Ruan: Corros. Sci., 2018, vol. 139, pp. 13–20.

    Article  CAS  Google Scholar 

  39. K. Park and H. Kwon: Electrochim. Acta, 2010, vol. 55(9), pp. 3421–27.

    Article  CAS  Google Scholar 

  40. W.N. Khan, S. Mahajan, and R. Chhibber: Mater. Lett., 2021, vol. 285, p. 129109.

    Article  CAS  Google Scholar 

  41. D. Zhang, P. Wen, B. Yin, and A. Liu: J. Manuf. Process., 2021, vol. 62, pp. 99–107.

    Article  Google Scholar 

  42. Y. Tang, Y. Zuo, J. Wang, X. Zhao, B. Niu, and B. Lin: Corros. Sci., 2014, vol. 80, pp. 111–19.

    Article  CAS  Google Scholar 

  43. Y.S. Zhang, X.M. Zhu, and S.H. Zhong: Corros. Sci., 2004, vol. 46(4), pp. 853–76.

    Article  CAS  Google Scholar 

  44. W. Wu, Y. Guo, H. Yu, Y. Jiang, and J. Li: Int. J. Electrochem. Sci., 2015, vol. 10(12), pp. 10689–702.

    CAS  Google Scholar 

  45. B.R. Tzaneva, L.B. Fachikov, and R.G. Raicheff: Corros. Eng. Sci. Technol., 2006, vol. 41(1), pp. 62–6.

    Article  CAS  Google Scholar 

  46. Q. Wang, Y. Ren, C. Yao, K. Yang, and R.D.K. Misra: Metallurg. Mater. Trans. A, 2015, vol. 46(12), pp. 5537–45.

    Article  CAS  Google Scholar 

  47. N. Pettersson, R.F.A. Pettersson, and S. Wessman: Metallurg. Mater. Trans. A, 2015, vol. 46(3), pp. 1062–72.

    Article  CAS  Google Scholar 

  48. P. Erazmus-Vignal, V. Vignal, and S. Saedlou: Corros. Sci., 2015, vol. 99, pp. 194–204.

    Article  CAS  Google Scholar 

  49. J.L. Lv, W. Guo, and T.X. Liang: J. Alloys Compd., 2016, vol. 686, pp. 176–83.

    Article  CAS  Google Scholar 

  50. A. Conde, I. García, J.J. De Damborenea: Corros. Sci. 2001, vol. 43(5), pp. 817–28.

  51. Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, and C. Zhou: Appl. Surf. Sci., 2017, vol. 404, pp. 110–28.

    Article  CAS  Google Scholar 

  52. H.Y. Ha, M.H. Jang, and T.H. Lee: Electrochim. Acta, 2016, vol. 191, pp. 864–75.

    Article  CAS  Google Scholar 

  53. J. Qiu, D.D. Macdonald, and R. Schoell: Corros. Sci., 2021, vol. 186, p. 109457.

    Article  CAS  Google Scholar 

  54. V. Guiñón-Pina, A. Igual-Muñoz, and J. García-Antón: Corros. Sci., 2011, vol. 53(2), pp. 575–81.

    Article  Google Scholar 

  55. I. Campos, M. Palomar-Pardavé, A. Amador, C. VillaVelázquez, and J. Hadad: Appl. Surf. Sci., 2007, vol. 253(23), pp. 9061–66.

    Article  CAS  Google Scholar 

  56. M.J. Carmezim, A.M. Simões, M.F. Montemor, and M.D. Cunha Belo: Corros. Sci., 2005, vol. 47, pp. 581–91.

    Article  CAS  Google Scholar 

  57. W.S. Li and J.L. Luo: Int. J. Electrochem. Sci., 2007, vol. 2, pp. 627–65.

    CAS  Google Scholar 

  58. M.F. Montemor, A.M.P. Simoes, and M.G.S. Ferreira: Corrosion, 1998, vol. 54(5), pp. 347–53.

    Article  CAS  Google Scholar 

  59. X.Z. Li, J.Z. Liu, J.M. Wang, and J.D. Geng: Int. J. Electrochem. Sci., 2019, vol. 14, pp. 8624–38.

    Article  CAS  Google Scholar 

  60. C. Man, C. Dong, Z. Cui, K. Xiao, Q. Yu, and X. Li: Appl. Surf. Sci., 2018, vol. 427, pp. 763–73.

    Article  CAS  Google Scholar 

  61. L. Wang, S. Voyshnis, A. Seyeux, and P. Marcus: Corros. Sci., 2020, vol. 173, p. 108779.

    Article  CAS  Google Scholar 

  62. M.G. Falchuk, S. Ramamurthy, and W.M. Lau: Corros. Sci., 2011, vol. 53(4), p. 1383.

    Article  Google Scholar 

  63. H. Luo, X. Wang, and C. Dong: Corros. Sci., 2017, vol. 124, pp. 178–92.

    Article  CAS  Google Scholar 

  64. M.G.S. Ferreira, M. Da Cunha Belo, N.E. Hakiki, G. Goodlet, M.F. Montemor, and A.M.P. Simões: Braz. Chem. Soc., 2002, vol. 13, pp. 433–40.

    CAS  Google Scholar 

  65. D. Bérardan, E. Guilmeau, and D. Pelloquin: J. Magn. Magn. Mater., 2008, vol. 320(6), pp. 983–89.

    Article  Google Scholar 

  66. B. Pieraggi, B. MacDougall, and R.A. Rapp: Corros. Sci., 2005, vol. 47(1), pp. 47–256.

    Article  Google Scholar 

  67. L. Zhang, Y. Jiang, B. Deng, W. Zhang, J. Xu, and J. Li: Mater. Character., 2009, vol. 60(12), pp. 1522–28.

    Article  CAS  Google Scholar 

  68. Y. Fu, X.Q. Wu, H. En-Hou, K. Wei, K. Yang, and Z.H. Jiang: Electrochim. Acta, 2009, vol. 54(5), pp. 1618–29.

    Article  CAS  Google Scholar 

  69. D.J. Sprouster, W.S. Cunningham, G.P. Halada, H. Yan, A. Pattammattel, X. Huang, and J.R. Trelewicz: Addit. Manuf., 2021, vol. 47, p. 102263.

    CAS  Google Scholar 

  70. J.K. Kim, Y.H. Kim, and J.S. Lee: Corros. Sci., 2010, vol. 52(5), pp. 1847–52.

    Article  CAS  Google Scholar 

  71. G.H. Aydoğdu and M.K. Aydinol: Corros. Sci., 2006, vol. 48(11), pp. 3565–83.

    Article  Google Scholar 

  72. X. Zhang, Y. Jiao, and Y. Yu: Corros. Sci., 2019, vol. 155, pp. 1–2.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was mainly supported by the Fundamental Research Funds for the National Natural Science Foundation of China (NSFC Project No. 51861019)

Author information

Authors and Affiliations

Authors

Contributions

YY participated in the conceptualization, methodology, writing of the original draft, writing, reviewing, & editing of the manuscript, and supervision. KN participated in the conceptualization, resources, data curation, formal analysis, and validation.

Corresponding author

Correspondence to Yinhui Yang.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Ni, K. Investigation on Corrosion Behavior of Simulated Welding HAZ for 22 pct Cr Lean Duplex Stainless Steel With Different Mn/N Ratio Addition. Metall Mater Trans A 54, 2924–2946 (2023). https://doi.org/10.1007/s11661-023-07068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07068-y

Navigation