Skip to main content

Advertisement

Log in

Evolution of Microstructure and Crystallographic Texture During Welding for 1.5 GPa Ultra-high Strength Steel Toughened by an Elongated Grain Structure With Intensive Texture

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The advanced microstructure of the elongated grain structure with intensive texture, which mainly consists of \(\left\{ {112} \right\}\left\langle {110} \right\rangle_{\alpha } \,{\text{and}}\,\left\{ {332} \right\}\left\langle {113} \right\rangle_{\alpha }\) components, significantly improves the toughness of 1.5 GPa ultra-high strength steel by delamination toughening. The elongated grain structure with texture affects the microstructure evolution of heat affected zone (HAZ), resulting in the refinement of coarse-grained HAZ(CGHAZ), the separate distribution of granular bainite and lath martensite in fine-grained HAZ (FGHAZ) and the formation of clustered blocky martensite in intercritical HAZ (ICHAZ). In ICHAZ, the sharp \(\left\{ {112} \right\}\left\langle {100} \right\rangle_{\alpha }\) of untransformed grains does not undergo reorientation for high thermal stability. For transformed grains, initial \(\left\{ {112} \right\}\left\langle {110} \right\rangle_{\alpha } \,{\text{and}}\,\left\{ {332} \right\}\left\langle {113} \right\rangle_{\alpha }\) components are reproduced by texture heredity. However, with the increase of peak temperature, the heredity tendency of texture weakens, causing the reduction of texture intensity. In CGHAZ, the Goss and \(\left\{ {112} \right\}\left\langle {110} \right\rangle_{\alpha }\) texture are obtained because of grains oriented growth. It is found that serious and heterogenous HAZ softening is a significant feature. FGHAZ becomes the weakest zone due to the massive formation of granular bainite. Due to the disappearance of \(\,\left\{ {332} \right\}\left\langle {113} \right\rangle_{\alpha }\) and the formation of Goss texture, CGHAZ shows the least modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Z.B. Jiao, J.H. Luan, M.K. Miller, Y.W. Chung, and C.T. Liu: Mater. Today., 2017, vol. 20, pp. 142–54. https://doi.org/10.1016/j.mattod.2016.07.002.

    Article  CAS  Google Scholar 

  2. L. Liu, Q. Yu, Z. Wang, J. Ell, and R.O. Ritchie: Science, 2020, vol. 368, pp. 1347–52. https://doi.org/10.1126/science.aba9413.

    Article  CAS  Google Scholar 

  3. J. Sun, H. Wang, B. Xu, L. Jiang, S. Guo, X. Sun, D. Yu, F. Liu, and Y. Liu: Acta. Mater., 2022, vol. 227, p. 117701. https://doi.org/10.1016/j.actamat.2022.117642.

    Article  CAS  Google Scholar 

  4. Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki: Science, 2008, vol. 320, pp. 1057–60. https://doi.org/10.1126/science.1156084.

    Article  CAS  Google Scholar 

  5. X. Shen, D.Z. Li, S. Tang, J. Chen, H. Fang, and G. Wang: Mater. Sci. Eng. A, 2019, vol. 766, p. 138342. https://doi.org/10.1016/j.msea.2019.138342.

    Article  CAS  Google Scholar 

  6. J. Kang, C. Li, G. Yuan, and G. Wang: Mater. Lett., 2016, vol. 175, pp. 157–60. https://doi.org/10.1016/j.matlet.2016.04.007.

    Article  CAS  Google Scholar 

  7. M. Tümer, C. Schneider-Bröskamp, and N. Enzinger: J. Manuf. Process., 2022, vol. 82, pp. 203–29. https://doi.org/10.1016/j.jmapro.2022.07.049.

    Article  Google Scholar 

  8. S.H.M. Anijdan, M. Aghaie-Khafri, H.R. Jafarian, and A.R. Khoshakhlagh: Sci. Technol. Weld. Join., 2017, vol. 23, pp. 387–93. https://doi.org/10.1080/13621718.2017.1401337.

    Article  CAS  Google Scholar 

  9. P. Yan, Ö.E. Guüngör, P. Thibaux, and H.K.D.H. Bhadeshia: Sci. Technol. Weld. Join., 2013, vol. 15, pp. 137–41. https://doi.org/10.1179/136217109X12568132624163.

    Article  CAS  Google Scholar 

  10. S. Mitra, K.S. Arora, B. Bhattacharya, and S.B. Singh: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 2915–26. https://doi.org/10.1007/s11661-020-05747-8.

    Article  CAS  Google Scholar 

  11. J. Capek, M. Cernik, N. Ganev, K. Trojan, J. Nemecek, and K. Kolarik: IOP Conf. Ser., 2018, vol. 375, p. 012025. https://doi.org/10.1088/1757-899x/375/1/012025.

    Article  CAS  Google Scholar 

  12. S. Mandal, N.K. Tewary, S.K. Ghosh, D. Chakrabarti, and S. Chatterjee: Mater. Sci. Eng. A, 2016, vol. 663, pp. 126–40. https://doi.org/10.1016/j.msea.2016.03.127.

    Article  CAS  Google Scholar 

  13. R. Badji, B. Cheniti, C. Kahloun, T. Chauveau, M. Hadji, and B. Bacroix: Int. J. Adv. Manuf. Technol., 2021, vol. 116, pp. 1115–32. https://doi.org/10.1007/s00170-021-07502-8.

    Article  Google Scholar 

  14. G. He, T. Peng, B. Jiang, X. Hu, Y. Liu, and C. Wu: Steel. Res. Int., 2021, vol. 92, p. 2100047. https://doi.org/10.1002/srin.202100047.

    Article  CAS  Google Scholar 

  15. R. Song, D. Ponge, D. Raabe, and R. Kaspar: Acta. Mater., 2005, vol. 53, pp. 845–58. https://doi.org/10.1016/j.actamat.2004.10.051.

    Article  CAS  Google Scholar 

  16. S. Takajo, C.C. Merriman, S.C. Vogel, and D.P. Field: Acta. Mater., 2019, vol. 166, pp. 100–12. https://doi.org/10.1016/j.actamat.2018.11.054.

    Article  CAS  Google Scholar 

  17. H. Cao, X. Luo, G. Zhan, and S. Liu: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4403–10. https://doi.org/10.1007/s11661-017-4200-0.

    Article  CAS  Google Scholar 

  18. M. Niu, G. Zhou, W. Wang, M.B. Shahzad, Y. Shan, and K. Yang: Acta. Mater., 2019, vol. 179, pp. 296–307. https://doi.org/10.1016/j.actamat.2019.08.042.

    Article  CAS  Google Scholar 

  19. W. Hou, Q. Liu, H. Wen, and J. Gu: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 3981–4039. https://doi.org/10.1007/s11661-020-05811-3.

    Article  CAS  Google Scholar 

  20. X. Zhang, X. Di, W. Jing, X. Zhou, C. Zhang, and C. Li: Steel. Res. Int., 2022, vol. 93, p. 2100776. https://doi.org/10.1002/srin.202100776.

    Article  CAS  Google Scholar 

  21. M. Amraei, S. Afkhami, V. Javaheri, J. Larkiola, T. Skriko, T. Björk, and X.L. Zhao: Thin. Wall. Struct., 2020, vol. 157, p. 107072. https://doi.org/10.1016/j.engstruct.2019.109460.

    Article  Google Scholar 

  22. X. Di, M. Tong, C. Li, C. Zhao, and D.P. Wang: Mater. Sci. Eng. A, 2019, vol. 743, pp. 67–76. https://doi.org/10.1016/j.msea.2018.11.070.

    Article  CAS  Google Scholar 

  23. R.K. Ray and J.J. Jonas: Int. Mater. Rev., 1990, vol. 35, pp. 1–36. https://doi.org/10.1179/095066090790324046.

    Article  Google Scholar 

  24. D. Zhuang, L. Wang, Y. Huang, X. Li, H. Zhang, and D. Ren: J. Iron. Steel. Res. Int., 2017, vol. 24, pp. 84–90. https://doi.org/10.1016/S1006-706X(17)30012-2.

    Article  Google Scholar 

  25. G. Niu, H.S. Zurob, R.D. Misra, Q. Tang, Z. Zhang, M.T. Nguyen, L. Wang, H. Wu, and Y. Zou: Acta. Mater., 2022, vol. 226, p. 117642. https://doi.org/10.1016/j.actamat.2022.117642.

    Article  CAS  Google Scholar 

  26. M. Baek, K. Kim, T. Park, J. Ham, and K. Lee: Mater. Sci. Eng. A, 2020, vol. 785, p. 139375. https://doi.org/10.1016/j.msea.2020.139375.

    Article  CAS  Google Scholar 

  27. A. Elramady, E. Sullivan, K. Sham, L. O’Brien, and S. Liu: Weld. World., 2021, vol. 66, pp. 195–211. https://doi.org/10.1007/s40194-021-01216-x.

    Article  Google Scholar 

  28. S. Afkhami, V. Javaheri, M. Amraei, T. Skriko, H. Piili, X.L. Zhao, and T. Björk: Mater. Design., 2022, vol. 213, p. 110336. https://doi.org/10.1016/j.matdes.2021.110336.

    Article  CAS  Google Scholar 

  29. C. Fang, C. Li, F. Ji, W. Fu, W. Hu, and X. Di: Materials, 2023, vol. 16, p. 550. https://doi.org/10.3390/ma16020550.

    Article  CAS  Google Scholar 

  30. F. Fang, Y. Zhao, L. Zhou, X. Hu, Z. Xie, and J. Jiang: Mater. Sci. Eng. A, 2014, vol. 618, pp. 505–10. https://doi.org/10.1016/j.msea.2014.09.061.

    Article  CAS  Google Scholar 

  31. S. Danilov, I. Semkina, I. Pyshmintsev, and M. Lobanov: IOP Conf. Ser., 2019, vol. 613, pp. 8–12. https://doi.org/10.1088/1757-899x/613/1/012006.

    Article  CAS  Google Scholar 

  32. M.L. Lobanov, I.Y. Pyshmintsev, V.N. Urtsev, S.V. Danilov, N.V. Urtsev, and A.A. Redikultsev: Phys. Metal Metallogr., 2020, vol. 120, pp. 1180–86. https://doi.org/10.1134/s0031918x1912010x.

    Article  CAS  Google Scholar 

  33. M. Mehdi, Y. He, E.J. Hilinski, L.A.I. Kestens, and A. Edrisy: Steel. Res. Int., 2019, vol. 90, p. 1800582. https://doi.org/10.1002/srin.201800582.

    Article  CAS  Google Scholar 

  34. J.L. Caron, S.S. Babu, and J.C. Lippold: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 4015–31. https://doi.org/10.1007/s11661-011-0801-1.

    Article  CAS  Google Scholar 

  35. A.H. Hunter, J.D. Farren, J.N. DuPont, and D.N. Seidman: Metall. Mater. Trans. A, 2012, vol. 44A, pp. 1741–59. https://doi.org/10.1007/s11661-012-1518-5.

    Article  CAS  Google Scholar 

  36. A. Zareidoost and M. Yousefpour: Mater. Lett., 2020, vol. 259, p. 126876. https://doi.org/10.1016/j.matlet.2019.126876.

    Article  CAS  Google Scholar 

  37. C. Lan, Y. Wu, L. Guo, and F. Chen: Mater. Sci. Eng. A, 2017, vol. 690, pp. 170–76. https://doi.org/10.1016/j.msea.2017.02.045.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 52274391), Natural Science Foundation of Fujian Province (Grant No. 2021J05232) and Qimai Foundation of Shanghang County (Grant No. 2020SHQM05).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengning Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, C., Li, C., Di, X. et al. Evolution of Microstructure and Crystallographic Texture During Welding for 1.5 GPa Ultra-high Strength Steel Toughened by an Elongated Grain Structure With Intensive Texture. Metall Mater Trans A 54, 3055–3068 (2023). https://doi.org/10.1007/s11661-023-07061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07061-5

Navigation