Skip to main content
Log in

Study on Construction Mechanism of Ceramic–Metal Thermal Barrier Coating System by Plasma Spraying

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A unique construction mechanism is present in the plasma-spraying process of the ceramic–metal thermal barrier coating (TBC) system. This study combines experimental and simulation methods for investigating the mechanism of how three ceramic–metal TBC systems (Y2O3-MCrAlY, 8YSZ-MCrAlY, and Cr2O3-Ni20Cr) are constructed on Inconel718 alloy substrates. The three systems are bilayer coatings with a ceramic as the top coat (TC) and metal as the bond coat (BC). The coatings have different morphologies depending on the degree of softening, and substrate BC is more likely to achieve a higher metallurgical bond than TC–BC. The property differences between BC and TC may affect the bonding strength of the TBC systems. In constructing bilayer coatings, the temperature and equivalent stress of coating particles are related to their own thermal conductivity and thermal softening coefficient, respectively. In addition, constructing the TC is the main factor that causes the temperature effects, and constructing the BC is the main factor that causes the equivalent stress effects. Furthermore, the constructed BC first protects the substrate and reduces the influence of the TC that is later constructed on the substrate. This study provides a basic reference for relevant engineering applications and subsequent in-depth research on bilayer and multilayer coating systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Z.-Y. Wei, G.-H. Meng, L. Chen, G.-R. Li, M.-J. Liu, W.-X. Zhang, L.-N. Zhao, Q. Zhang, X.-D. Zhang, C.-L. Wan, Z.-X. Qu, L. Chen, J. Feng, L. Liu, H. Dong, Z.-B. Bao, X.-F. Zhao, X.-F. Zhang, L. Guo, L. Wang, B. Cheng, W.-W. Zhang, P.-Y. Xu, G.-J. Yang, H.-N. Cai, H. Cui, Y. Wang, F.-X. Ye, Z. Ma, W. Pan, M. Liu, K.-S. Zhou, and C.-J. Li: J. Adv. Ceram., 2022, vol. 11, pp. 985–1068.

    Article  CAS  Google Scholar 

  2. K. Mondal, L. Nuñez, C.M. Downey, and I.J. van Rooyen: Ind. Eng. Chem. Res., 2021, vol. 60, pp. 6061–77.

    Article  CAS  Google Scholar 

  3. X. Tan, J. zhang, H. Zhu, Z. Zhang, X. Zhu, W. Ni, T. Li, T. Kuang, H. Dai and X. Zhang: Ceram. Int. 2022, vol. 48, pp. 33992–98.

  4. J. Ahn, B. Hwang, E.P. Song, S. Lee, and N.J. Kim: Metall. Mater. Trans. A., 2006, vol. 37, pp. 1851–61.

    Article  Google Scholar 

  5. P.G. Lashmi, P.V. Ananthapadmanabhan, G. Unnikrishnan, and S.T. Aruna: J. Eur. Ceram. Soc., 2020, vol. 40, pp. 2731–45.

    Article  CAS  Google Scholar 

  6. N.P. Padture, M. Gell, and E.H. Jordan: Science, 2002, vol. 296, pp. 280–84.

    Article  CAS  Google Scholar 

  7. L. Wang, D.C. Li, J.S. Yang, F. Shao, X.H. Zhong, H.Y. Zhao, K. Yang, S.Y. Tao, and Y. Wang: J. Eur. Ceram. Soc., 2016, vol. 36, pp. 1313–31.

    Article  CAS  Google Scholar 

  8. Z. Zheng, P. Chen, F. Zhang, M. Yao, H. Wang, and H. Liu: Appl. Therm. Eng., 2022, vol. 217, 119068.

    Article  CAS  Google Scholar 

  9. E. Poursaeidi, A. Azizi Far, J. Rahimi and M. R. Javadi Sigaroodi: Engineering Failure Analysis 2022, vol. 141, p. 106682.

  10. D. Texier, C. Cadet, T. Straub, C. Eberl, and V. Maurel: Metall. Mater. Trans. A., 2020, vol. 51A, pp. 2766–77.

    Article  Google Scholar 

  11. K. Fritscher, W. Braue, and U. Schulz: Metall. Mater. Trans. A., 2013, vol. 44A, pp. 2070–82.

    Article  Google Scholar 

  12. Q. Liu, X.P. Hu, W. Zhu, G.L. Liu, J.W. Guo, and J. Bin: Ceram. Int., 2022, vol. 48, pp. 24402–10.

    Article  CAS  Google Scholar 

  13. Q. Guo, W. He, C. Li, J. He, J. Sun, and H. Guo: Ceram. Int., 2022, vol. 48, pp. 9313–23.

    Article  CAS  Google Scholar 

  14. Y.Q. Xiao, Z.Y. Liu, W. Zhu, and X.M. Peng: Surf. Coat. Technol., 2021, vol. 423, 127572.

    Article  CAS  Google Scholar 

  15. Z.C. Hu, L. Wang, M.X. Zhuang, H.Y. Zhang, G.S. Li, Y. Liu, Y. Wang, and Y. Yang: Ceram. Int., 2021, vol. 47, pp. 5364–73.

    Article  CAS  Google Scholar 

  16. Z. Cai, Z. Zhang, Y. Liu, X. Zhao, and W. Wang: Chin. J. Mech. Eng., 2021, vol. 34, p. 128.

    Article  Google Scholar 

  17. K. Bobzin, N. Bagcivan, D. Parkot, and I. Petković: Surf. Coat. Technol., 2010, vol. 204, pp. 1211–15.

    Article  CAS  Google Scholar 

  18. A. Fardan and R. Ahmed: J. Therm. Spray Technol., 2019, vol. 28, pp. 717–36.

    Article  CAS  Google Scholar 

  19. E. Lin, Q. Chen, O.C. Ozdemir, V.K. Champagne, and S. Müftü: J. Therm. Spray Technol., 2019, vol. 28, pp. 472–83.

    Article  Google Scholar 

  20. X. Song, K.L. Ng, J.M.-K. Chea, W. Sun, A.W.-Y. Tan, W. Zhai, F. Li, I. Marinescu, and E. Liu: Surf. Coat. Technol., 2020, vol. 385, 125433.

    Article  CAS  Google Scholar 

  21. J. Xiao, J. Pan, H. Guo, and M. Lv: Int. J. Adv. Manuf. Technol., 2022, vol. 120, pp. 6393–405.

    Article  Google Scholar 

  22. S. Tailor, R.M. Mohanty, and A.V. Doub: Mater. Today, 2016, vol. 3, pp. 2725–34.

    Google Scholar 

  23. X. Gao, C. Li, D. Zhang, H. Gao, and X. Han: Surf. Coat. Technol., 2021, vol. 405, 126588.

    Article  CAS  Google Scholar 

  24. J. Pan, S. Hu, L. Yang, K. Ding, and B. Ma: Mater. Des., 2016, vol. 96, pp. 370–76.

    Article  Google Scholar 

  25. A. Kiran Kumar and P. Venkataramaiah: Mater. Today 2019, vol. 18, pp. 4531–36.

  26. Z. Zhu, S. Kamnis, and S. Gu: Acta Mater., 2015, vol. 90, pp. 77–87.

    Article  CAS  Google Scholar 

  27. K.A. Khor and Y.W. Gu: Mater. Sci. Eng. A, 2000, vol. 277, pp. 64–76.

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by a scientific research start-up fund of Qingdao University of Science and Technology (12030430010674) and a China Postdoctoral Science Foundation funded project (Grant No. 2021M691703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajing Pan.

Ethics declarations

Conflict of interest

On behalf of all of the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Pan, J., Gu, Y. et al. Study on Construction Mechanism of Ceramic–Metal Thermal Barrier Coating System by Plasma Spraying. Metall Mater Trans A 54, 2827–2840 (2023). https://doi.org/10.1007/s11661-023-07060-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07060-6

Navigation